Skip to main content
×
×
Home

Evidence-based Effective Triage Operation During Disaster: Application of Human-trajectory Data to Triage Drill Sessions

  • Shoichi Ohta (a1), Ikushi Yoda (a2), Munekazu Takeda (a3), Satomi Kuroshima (a4), Kotaro Uchida (a1), Kentaro Kawai (a1) and Tetsuo Yukioka (a1)...
Abstract
Introduction

Though many governmental and nongovernmental efforts for disaster prevention have been sought throughout Japan since the Great East Japan Earthquake on March 11, 2011, most of the preparation efforts for disasters have been based more on structural and conventionalized regulations than on scientific and objective grounds.

Problem

There has been a lack of scientific knowledge for space utilization for triage posts in disaster drill sessions. This report addresses how participants occupy and make use of the space within a triage post in terms of areas of use and occupied time.

Method

The trajectories of human movement by using Ubiquitous Stereo Vision (USV) cameras during two emergency drill sessions held in 2012 in a large commercial building have been measured. The USV cameras collect each participant's travel distance and the wait time before, during, and after undergoing triage. The correlation between the wait time and the space utilization of patients at a triage post has been analyzed.

Results

In the first session, there were some spaces not entirely used. This was caused largely by a patient who arrived earlier than others and lingered in the middle area, which caused the later arrivals to crowd the entrance area. On the other hand, in the second session, the area was used in a more evenly-distributed manner. This is mainly because the earlier arrivals were guided to the back space of the triage post (ie, the opposite side of the entrance), and the late arrivals were also guided to the front half, which was not occupied by anyone. As a result, the entire space was effectively utilized without crowding the entrance.

Conclusion

This study has shown that this system could measure people's arrival times and the speed of their movements at the triage post, as well as where they are placed until they receive triage. Space utilization can be improved by efficiently planning and controlling the positioning of arriving patients. Based on the results, it has been suggested that for triage operation, it is necessary to efficiently plan and control the placement of patients in order to use strategically limited spatial resources.

Ohta S , Yoda I , Takeda M , Kuroshima S , Uchida K , Kawai K , Yukioka T . Evidence-based Effective Triage Operation During Disaster: Application of Human-trajectory Data to Triage Drill Sessions. Prehosp Disaster Med. 2015;30(1):1-8 .

Copyright
Corresponding author
Correspondence: Shoichi Ohta, MD, PhD Department of Emergency and Critical Care Medicine Tokyo Medical University Hospital 6-7-1 Nishishinjuku, Shinjuku-ku Tokyo 160-0023, Japan E-mail sho-ohta@tokyo-med.ac.jp
Footnotes
Hide All

Conflicts of interest: none

Footnotes
References
Hide All
1. Mackway-Jones, K (ed). Major Incident Medical Management and Support. Hoboken, New Jersey USA: Blackwell Publishing Ltd; 2012.
2. Arishima, T, Higashioka, H, Tanaka, K, Hayano, D, Matsui, N, Hayashi, M. Development of the disaster drill for the staff member at the hospital of the region in Japan. Prehosp Disaster Med. 2011;26(S1):S114.
3. Yagishita, Y, Abe, H, Kisara, A. Systems and problems of disaster drills in the national hospitals of Japan. Prehosp Disaster Med. 1997;12(S1):S40-S41.
4. Yoda, I, Sakae, K. “Ubiquitous Stereo Vision for Human Sensing.” In: Monekosso D, Remangnino P, Kuno Y, (eds). Intelligent Environments. Proceedings of the 5th International Conference on Intelligent Environments. New York, New York USA: Springer-Verlag; 2009:91-107.
5. Yamashita, T, Soeda, S, Onishi, M, Noda, I. “Exhaustive testing of evacuation plan with high-speed evacuation simulator.” Proceedings of International Scientific and Technical Conference Emergency Evacuation of People from Buildings 2011;357-364.
6. Yoda, I, Hosotani, D, Sakaue, K. Multi-point stereo camera system for controlling safety at railroad crossings. Computer Vision Systems, 2006. IEEE International Conference; 2006:51.
7. Yoda, I, Hosotani, D, Sakaue, K. Ubiquitous Stereo Vision for controlling safety on platforms in railroad stations. IEEJ Transactions on Electronics, Information, and Systems. 2004;124(3):805-811.
8. Yoda, I, Hosotani, D, Sakaue, K. A remaining people counter using 3D Ubiquitous Stereo Vision. The Journal of the Institute of Image Information and Television Engineers. 2006;60(11):1829-1834.
9. Cone, DC, Serra, J, Kurland, L. Comparison of the SALT and SMART triage systems using a virtual reality simulator with paramedic students. Eur J Emerg Med. 2011;18(6):314-321.
10. Abir, M, Davis, MM, Sankar, P, Wong, AC, Wang, SC. Design of a model to predict surge capacity bottlenecks for burn mass casualties at a large academic medical center. Prehosp Disaster Med. 2013;28(1):23-32.
11. Leow, JJ, Brundage, SI, Kushner, AL, et al. Mass casualty incident training in a resource-limited environment. British J Surg. 2012;99(3):356-361.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Prehospital and Disaster Medicine
  • ISSN: 1049-023X
  • EISSN: 1945-1938
  • URL: /core/journals/prehospital-and-disaster-medicine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
VIDEO
Supplementary materials

Ohta Supplementary Material
Video S2

 Video (5.1 MB)
5.1 MB
UNKNOWN
Supplementary materials

Ohta Supplementary Material
Figure S1

 Unknown (7.0 MB)
7.0 MB
UNKNOWN
Supplementary materials

Ohta Supplementary Material
Figure S2

 Unknown (4.9 MB)
4.9 MB
VIDEO
Supplementary materials

Ohta Supplementary Material
Video S1

 Video (2.1 MB)
2.1 MB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed