Skip to main content

Comparison of coronary heart disease genetic assessment with conventional cardiovascular risk assessment in primary care: reflections on a feasibility study

  • Nadeem Qureshi (a1), Joe Kai (a1), Jo Middlemass (a2), Paula Dhiman (a1), Laura Cross-Bardell (a1), Jayshree Acharya (a3), Ka Wan Li (a3), Steve E. Humphries (a3) and Penelope J. Standen (a1)...

This study assesses the feasibility of collecting genetic samples and self-reported outcome measures after cardiovascular risk assessment, and presenting the genetic test results to participants.


Coronary heart disease (CHD) genetic tests are increasingly available through direct-to-consumer marketing, but their potential clinical impact on cardiovascular risk assessment is unclear.


Observational study in 10 British general practices in Central England. A total of 320 individuals, who had completed conventional cardiovascular risk assessment, were offered CHD genetic test, with follow-up outcome questionnaire at eight months for lifestyle change and State-Trait Anxiety.


A total of 119 (37%) participants returned genetic test specimens, with over a third reporting family history of CHD in a specified relative; 79 (66.4%) were categorized above-average risk on conventional cardiovascular risk assessment, 65 of whom (82.3%) were only average risk on genetic assessment. The dietary fat questionnaire was poorly completed while study participation was not associated with increased anxiety (mean increase in anxiety score=2.1; 95% CI −0.1–4.3; P=0.06).


As a feasibility study, over a third of individuals offered genetic testing in primary care, as part of CVD risk assessment, took up the offer. Although intervention did not appear to increase anxiety, this needs further evaluation. To improve generalizability and effect size, future studies should actively engage individuals from wider socio-economic backgrounds who may not have already contemplated lifestyle change. The current research suggests general practitioners will face the clinical challenge of patients presenting with direct-to-consumer genetic results that are inconsistent with conventional cardiovascular risk assessment.

Corresponding author
Correspondence to: Nadeem Qureshi, Clinical Professor of Primary Care, Division of Primary Care, University of Nottingham, 13th Floor, Tower Building, University Park, Nottingham, NG7 2RD, United Kingdom. Email:
Hide All
Axworthy, D., Marteau, T.M., Brock, D.J.H. and Bobrow, M. 1996: Psychological impact of population-based carrier testing for cystic fibrosis: 3-year follow-up. The Lancet 347, 14431446.
Bloss, C.S., Schork, N.J. and Topol, E.J. 2011: Effect of direct-to-consumer genomewide profiling to assess disease risk. New England Journal of Medicine 364, 524534.
Drenos, F., Whittaker, J.C. and Humphries, S.E. 2007: The use of meta-analysis risk estimates for candidate genes in combination to predict coronary heart disease risk. Annals of Human Genetics 71, 611619.
Goldsmith, L., Jackson, L., O’Connor, A. and Skirton, H. 2012: Direct-to-consumer genomic testing: systematic review of the literature on user perspectives. European Journal of Human Genetics 20, 811816.
Grant, R.W., O’Brien, K.E., Waxler, J.L., Vassy, J.L., Delahanty, L.M., Bissett, L.G. and Green, R.C. 2013: Personalized genetic risk counselling to motivate diabetes prevention. Diabetes Care 36, 1319.
Henrikson, N.B., Bowen, D. and Burke, W. 2009: Does genomic risk information motivate people to change their behavior? Genome Medicine 1, 37.
Hippisley-Cox, J., Coupland, C., Robson, J. and Brindle, P. 2010: Derivation, validation, and evaluation of a new QRISK model to estimate lifetime risk of cardiovascular disease: cohort study using QResearch database. British Medical Journal 341, c6624.
Holmes, M.V., Harrison, S., Talmud, P.J., Hingorani, A. and Humphries, S.E. 2011: Utility of genetic determinants of lipids and cardiovascular events in assessing risk. Nature Reviews Cardiology 8, 207221.
Hughes, M.F., Saarela, O., Strizke, J., Kee, F., Silander, K., Klopp, N., Kontto, J., Karvanen, J., Willenborg, C., Salomaa, V., Viramo, J. and Amouyel, P. 2012: Genetic markers enhance coronary risk prediction in men: the MORGAM prospective cohorts. PLoS One 7, e40922.
Humphries, S.E., Drenos, F., Ken-Dror, G. and Talmud, P.J. 2010: CHD risk prediction in the GWAS/OMICS Era: current status and what the future holds. Circulation 121, 22352248.
Liang, B.A. and Mackey, T. 2011: Direct-to-consumer advertising with interactive internet media: global regulation and public health issues. The Journal of the American Medical Association 305, 824825.
Lippi, G., Favaloro, E.J. and Plebani, M. 2011: Direct-to-consumer testing: more risks than opportunities. International Journal of Clinical Practice 65, 12211229.
Marteau, T. and Bekker, H.T. 1992: The development of a six-item short-form of the state scale of the Spielberger State-Trait Anxiety Inventory (STAI). British Journal of Clinical Psychology 31, 301306.
Marteau, T.M. 1989: Psychological costs of screening. British Medical Journal 299, 527.
Marteau, T.M., French, D.P., Griffin, S.J., Prevost, A.T., Sutton, S., Watkinson, C., Attwood, S. and Hollands, G.J. 2010: Effects of communicating DNA-based disease risk estimates on risk-reducing behaviours. Cochrane Database of Systematic Reviews 10, CD007275.
Meisel, S.F., Walker, C. and Wardle, J. 2012: Psychological responses to genetic testing for weight gain: a vignette study. Obesity 20, 540546.
Middlemass, J.B., Yazdani, M.F., Kai, J., Standen, P.J. and Qureshi, N. 2014: Introducing genetic testing for cardiovascular disease in primary care: a qualitative study. British Journal of General Practice 64, e282289.
National Cholesterol Education Program Expert Panel (NCEP). 2002: Third report of the National Cholesterol Education Program Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 106, 3143.
National Institute for Health and Clinical Excellence. 2014. NICE clinical guideline 181 lipid modification: cardiovascular risk assessment and the modification of blood lipids for the primary and secondary prevention of cardiovascular disease. London: NICE.
NHS Health Check Programme. 2009. Putting prevention first – vascular checks: risk assessment and management. London: Department of Health.
Prochaska, J.O., Velicer, W.F., Redding, C., Rossi, J.S., Goldstein, M., DePue, J., Greene, G.W., Rossi, S.R., Sun, X., Fava, J.L., Laforge, R., Rakowski, W. and Plummer, B.A. 2005: Stage-based expert systems to guide a population of primary care patients to quit smoking, eat healthier, prevent skin cancer, and receive regular mammograms. Preventive Medicine 41, 406416.
Qureshi, N., Armstrong, S., Dhiman, P., Saukko, P., Middlemass, J., Evans, P.H. and Kai, J. 2012: Effect of adding systematic family history enquiry to cardiovascular disease risk assessment in primary care: a matched-pair, cluster randomized trial. Annals of Internal Medicine 156, 253262.
Roe, L., Strong, C., Whiteside, C., Neil, A. and Mant, D. 1994: Dietary intervention in primary care: validity of the DINE method for diet assessment. Family Practice 11, 375381.
Roger, V.L., Go, A.S., Lloyd-Jones, D.M.l., Benjamin, E.J., Berry, J.D., Borden, W.B. On behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. 2012: Heart disease and stroke statistics – 2012 update: a report from the American Heart Association. Circulation 125, e2e220.
Rose, P., Humm, E., Hey, K., Jones, L. and Huson, S.M. 1999: Family history taking and genetic counselling in primary care. Family Practice 16, 7883.
Spielberger, C.D., Gorsuch, R.L., Lushene, R., Vagg, P.R. and Jacobs, G.A. 1983: Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press.
Senior, V., Marteau, T. and Peters, T. 1999: Will genetic testing for predisposition for disease result in fatalism? A qualitative study of parents responses to neonatal screening for familial hypercholesterolaemia. Social Science & Medicine 48, 18571860.
Swerdlow, D., Holmes, M.V., Harrison, S. and Humphries, S.E. 2012: The genetics of coronary heart disease. British Medical Bulletin 102, 5977.
Talmud, P.J., Cooper, J.A., Palmen, J., Lovering, R., Drenos, F., Hingorani, A.D. and Humphries, S.E. 2008: Chromosome 9p21.3 coronary heart disease locus genotype and prospective risk of CHD in healthy middle-aged men. Clinical Chemistry 54, 467474.
Task Force Report. 1998: Prevention of coronary heart disease in clinical practice. recommendations of the second joint task force of European and other societies on coronary prevention. European Heart Journal 19, 14341503.
The Wellcome Trust Case Control Consortium. 2007: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661678.
U.S. Department of Health and Human Services (DHSS). 2008. Physical Activity Guidelines for Americans. Washington, DC: DHSS.
Wood, D., Durrington, D., McInnes, G., Poulter, N., Rees, A. and Wray, R. 1998: Joint British recommendations on prevention of coronary heart disease in clinical practice. Heart 80 (Suppl 2), s1s29.
Wood, D., Wray, R., Poulter, N., Williams, B., Kirby, M., Patel, V., Durrington, P., Reckless, J., Davis, M., Sivers, F. and Potter, J. 2005: JBS 2: Joint British Societies’ guidelines on prevention of cardiovascular disease in clinical practice. Heart 91 (Suppl 5), v1v52.
World Health Organization. 2011: Global burden of coronary heart disease. Retrieved 20 December 2014 from
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Primary Health Care Research & Development
  • ISSN: 1463-4236
  • EISSN: 1477-1128
  • URL: /core/journals/primary-health-care-research-and-development
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Qureshi supplementary material
Tables S1-S4

 Word (90 KB)
90 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed