Hostname: page-component-7857688df4-fzltz Total loading time: 0 Render date: 2025-11-14T11:23:26.077Z Has data issue: false hasContentIssue false

Hoffman program of Laplacian matching polynomials of graphs

Published online by Cambridge University Press:  10 November 2025

Zhaoxi Li
Affiliation:
School of Mathematics and Statistics, Shandong University of Technology, Zibo, China (lzhaoxi@aliyun.com; jfwang@aliyun.com; shimeimapapers@163.com)
Jianfeng Wang
Affiliation:
School of Mathematics and Statistics, Shandong University of Technology, Zibo, China (lzhaoxi@aliyun.com; jfwang@aliyun.com; shimeimapapers@163.com)
Shi-Mei Ma
Affiliation:
School of Mathematics and Statistics, Shandong University of Technology, Zibo, China (lzhaoxi@aliyun.com; jfwang@aliyun.com; shimeimapapers@163.com)
Francesco Belardo
Affiliation:
Department of Mathematics and Applications, University ‘Federico II’, Naples, Italy (fbelardo@unina.it)

Abstract

Let $\mathcal{G}$ be the class of all connected simple graphs. The Hoffman program of graphs with respect to a spectral invariant $\lambda(G)$ consists of determining all the limit points of the set $\{\lambda(G)\,\vert\, G\in\mathcal{G}\}$ and characterising all $G$’s such that $\lambda(G)$ does not exceed a fixed limit point. In this paper, we study the Hoffman program for Laplacian matching polynomials of graphs in regard to their largest Laplacian matching roots. Precisely, we determine all the limit points of the largest Laplacian matching roots of graphs less than $\tau = 2+\omega^{\frac{1}{2}}+\omega^{-\frac{1}{2}}(=4.38+)$, and then characterise the connected graphs with the largest Laplacian matching roots less than $2+\sqrt{5}$, where $\omega=\frac{1}{3}(\sqrt[3]{19+3\sqrt{33}}+\sqrt[3]{19-3\sqrt{33}}+1)$.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anderson, W. N., William, N. and Morley, T. D., Eigenvalues of the Laplacian of a graph, Linear Multilinear Algebra 18 (2) (1985), 141145.10.1080/03081088508817681CrossRefGoogle Scholar
Belardo, F., Marzia, E. L., Simić, S. K. and Wang, J. F., Graphs whose signless Laplacian spectral radius does not exceed the Hoffman limit value, Linear Algebra Appl. 435 (11) (2011), 29132920.10.1016/j.laa.2011.05.006CrossRefGoogle Scholar
Cvetković, D., Rowlinson, P. and Simić, S., An Introduction to the Theory of Graph Spectra. London Math. Soc. Stud. Texts, Volume 75 (Cambridge University Press, Cambridge, 2010).Google Scholar
Godsil, C. D., Matchings and walks in graphs, J. Graph Theory 5(3) (1981), 285297.10.1002/jgt.3190050310CrossRefGoogle Scholar
Godsil, C. D., Algebraic combinatorics, chapman and hall mathematics series, (Chapman & Hall, New York, 1993).Google Scholar
Godsil, C. D. and Gutman, I., On the matching polynomial of a graph. in Algebraic methods in graph theory, Volume I, II, pp. 241249 (North-Holland, Amsterdam, New York, 1981) Colloq. Math. Soc. János Bolyai, 25.Google Scholar
Guo, J. -M., On limit points of Laplacian spectral radii of graphs, Linear Algebra Appl. 429(7) (2008), 17051718.10.1016/j.laa.2008.05.008CrossRefGoogle Scholar
Heilmann, O. J. and Lieb, E. H., Theory of monomer-dimer systems, Comm. Math. Phys. 25 (3) (1972), 190232.10.1007/BF01877590CrossRefGoogle Scholar
Hoffman, A. J., On limit points of spectral radii of non-negative symmetric integral matrices, Graph Theory and Appl, Lect. Notes Math. 303 (1972), 165172.10.1007/BFb0067367CrossRefGoogle Scholar
Hoffman, A. J. and Smith, J. H., On the spectral radii of topologically equivalent graphs. in Recent Advances in Graph Theory, Proc. Symp. Prague June 1974, Academia Praha, Prague, (ed. Fiedler, M.), pp. 273281 (1975).Google Scholar
Jiang, Z. L. and Polyanskii, A., Forbidden subgraphs of bounded spectral radius with applications to equiangular lines, Israel J. Math. 236 (1) (2020), 393421.10.1007/s11856-020-1983-2CrossRefGoogle Scholar
Li, D. Y. and Yan, W. G., Combinatorial explanation of coefficients of the Laplacian matching polynomial of graphs, Discrete Math. 345 (5) (2022), 112812.10.1016/j.disc.2022.112812CrossRefGoogle Scholar
Marcus, A. W., Spielman, D. A. and Srivastava, N., Interlacing families I: Bipartite Ramanujan graphs of all degrees, Annal. Math.-Second Ser. 182 (2015), 307325.10.4007/annals.2015.182.1.7CrossRefGoogle Scholar
Mohammadian, A., Laplacian matching polynomial of graphs, J. Algebraic Combin. 52(1) (2020), 3339.10.1007/s10801-019-00892-9CrossRefGoogle Scholar
Oliveira, E. R. and Trevisan, V., Limit points of $A_\unicode{x03B1}$-matrices of graphs, Linear Algebra Appl. 728 (2026), 12.10.1016/j.laa.2025.08.014CrossRefGoogle Scholar
Shi, Y. T., Dehmer, M., Li, X. L. and Gutman, I, Graph Polynomials, (Chapman & Hall New York, 2017).Google Scholar
Wan, J. -C., Wang, Y. and Mohammadian, A., On the location of zeros of the Laplacian matching polynomials of graphs, J. Algebraic Combin. 56(3) (2022), 755771.10.1007/s10801-022-01130-5CrossRefGoogle Scholar
Wan, J. -C., Wang, Y. and Wang, Z. -Y., Subdivision method in the Laplacian matching polynomial, J. Algebraic Combin. 61(3) (2025), 114.10.1007/s10801-025-01405-7CrossRefGoogle Scholar
Wang, J. F., Wang, J., Maurizio, M., Belardo, F. and Wang, L. G., Developments on the Hoffman program of graph, Adv. Appl. Math. 169 (2025), 10291.10.1016/j.aam.2025.102915CrossRefGoogle Scholar
Wang, Y., Cui, H. -J. and Cioaba, S. M., On the Laplacian matching root integral variation (2023), arXiv:2302.08730v.Google Scholar
Zhang, Y. and Chen, H., The average Laplacian polynomial of a graph, Discrete Appl. Math. 283 (2020), 737743.10.1016/j.dam.2020.01.037CrossRefGoogle Scholar