Skip to main content

A Few Remarks on the Tube Algebra of a Monoidal Category

  • Sergey Neshveyev (a1) and Makoto Yamashita (a2)

We prove two results on the tube algebras of rigid C*-tensor categories. The first is that the tube algebra of the representation category of a compact quantum group G is a full corner of the Drinfeld double of G. As an application, we obtain some information on the structure of the tube algebras of the Temperley–Lieb categories 𝒯ℒ(d) for d > 2. The second result is that the tube algebras of weakly Morita equivalent C*-tensor categories are strongly Morita equivalent. The corresponding linking algebra is described as the tube algebra of the 2-category defining the Morita context.

Corresponding author
*Corresponding author.
Hide All
1.Arano, Y., Unitary spherical representations of Drinfeld doubles, to appear in J. Reine Angew. Math. (2014), Preprint (arXiv:1410.6238), DOI:10.1515/crelle-2015-0079.
2.Bischoff, M., Kawahigashi, Y., Longo, R. and Rehren, K.-H., Tensor categories and endomorphisms of von Neumann algebras—with applications to quantum field theory, Springer Briefs in Mathematical Physics Volume 3 (Springer, Cham, 2015).
3.Brothier, A. and Jones, V. F. R., Hilbert modules over a planar algebra and the Haagerup property, J. Funct. Anal. 269(11) (2015), 36343644.
4.De Commer, K., Freslon, A. and Yamashita, M., CCAP for universal discrete quantum groups, Comm. Math. Phys. 331(2) (2014), 677701.
5.Evans, D. E. and Kawahigashi, Y., On Ocneanu's theory of asymptotic inclusions for subfactors, topological quantum field theories and quantum doubles, Internat. J. Math. 6(2) (1995), 205228.
6.Ghosh, S. K. and Jones, C., Annular representation theory for rigid C*-tensor categories, J. Funct. Anal. 270(4) (2016), 15371584.
7.Izumi, M., The structure of sectors associated with Longo–Rehren inclusions. I. General theory, Comm. Math. Phys. 213(1) (2000), 127179.
8.Jones, C., Quantum G2 categories have property (T), Internat. J. Math. 27(2) (2016), 16500154.
9.Jones, V. F. R., The annular structure of subfactors, In Essays on Geometry and Related Topics, Volume 1, 2 (ed. Ghys, E., de la Harpe, P., Jones, V.F.R., Sergiescu, V. and Tsuboi, T.), pp. 401463 (Enseignement Math., Geneva, 2001).
10.Jones, V. F. R. and Reznikoff, S. A., Hilbert space representations of the annular Temperley–Lieb algebra, Pacific J. Math. 228(2) (2006), 219249.
11.Kustermans, J., Universal C*-algebraic quantum groups arising from algebraic quantum groups, Preprint (arXiv:funct-an/9704006; 1997).
12.Longo, R. and Rehren, K.-H., Nets of subfactors, Rev. Math. Phys. 7(4) (1995), 567597.
13.Longo, R. and Roberts, J. E., A theory of dimension, K-Theory 11(2) (1997), 103159.
14.Mac Lane, S. Categories for the working mathematician, 2nd edition, Graduate Texts in Mathematics, Volume 5 (Springer-Verlag, New York, 1998).
15.Masuda, T., An analogue of Longo's canonical endomorphism for bimodule theory and its application to asymptotic inclusions, Internat. J. Math. 8(2) (1997), 249265.
16.Meir, E. and Szymik, M., Drinfeld centres for bicategories, Doc. Math. 20 (2015), 707735.
17.Müger, M., From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories, J. Pure Appl. Algebra 180(1–2) (2003), 81157.
18.Müger, M., From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors, J. Pure Appl. Algebra 180(1–2) (2003), 159219.
19.Neshveyev, S. and Tuset, L., Compact Quantum Groups and their Representation Categories. Cours Spécialisés (Specialized Courses), Volume 20 (Société Mathématique de France, Paris, 2013).
20.Neshveyev, S. and Yamashita, M., Drinfeld centre and representation theory for monoidal categories, Comm. Math. Phys. 345(1) (2016), 385434.
21.Podleś, P. and Woronowicz, S. L., Quantum deformation of Lorentz group, Comm. Math. Phys. 130(2) (1990), 381431.
22.Popa, S., Symmetric enveloping algebras, amenability and AFD properties for subfactors, Math. Res. Lett. 1(4) (1994), 409425.
23.Popa, S., Shlyakhtenko, D. and Vaes, S., Cohomology and L 2-Betti numbers for subfactors and quasi-regular inclusions, Internat. Math. Res. Notices (2017), in press.
24.Popa, S. and Vaes, S., Representation theory for subfactors, λ-lattices and C*-tensor categories, Comm. Math. Phys. 340(3) (2015), 12391280.
25.Pusz, W., Irreducible unitary representations of quantum Lorentz group, Comm. Math. Phys. 152(3) (1993), 591626.
26.Pusz, W. and Woronowicz, S. L., Representations of quantum Lorentz group on Gelfand spaces, Rev. Math. Phys. 12(12) (2000), 15511625.
27.Rieffel, M. A., Morita equivalence for C*-algebras and W*-algebras, J. Pure Appl. Algebra 5 (1974), 5196.
28.Schauenburg, P., The monoidal centre construction and bimodules, J. Pure Appl. Algebra 158(2–3) (2001), 325346.
29.Shimizu, K., The Monoidal centre and the character algebra, J. Pure Appl. Algebra 221(9) (2017), 23382371.
30.Voigt, C., The Baum–Connes conjecture for free orthogonal quantum groups, Adv. Math. 227(5) (2011), 18731913.
31.Yamagami, S., Frobenius reciprocity in tensor categories, Math. Scand. 90(1) (2002), 3556.
32.Yamagami, S., Frobenius algebras in tensor categories and bimodule extensions, In Galois theory, Hopf algebras, and semiabelian categories (ed. Janelidze, G., Pareigis, B. and Tholen, W.), pp. 551570, Fields Institute Communications, Volume 43 (American Mathematical Society, Providence, RI, 2004).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Edinburgh Mathematical Society
  • ISSN: 0013-0915
  • EISSN: 1464-3839
  • URL: /core/journals/proceedings-of-the-edinburgh-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 7 *
Loading metrics...

Abstract views

Total abstract views: 41 *
Loading metrics...

* Views captured on Cambridge Core between 8th May 2018 - 25th June 2018. This data will be updated every 24 hours.