Skip to main content

The Direct Collapse of Supermassive Black Hole Seeds

  • John A. Regan (a1), Peter H. Johansson (a1) and John H. Wise (a2)

The direct collapse model of supermassive black hole seed formation requires that the gas cools predominantly via atomic hydrogen. To this end we simulate the effect of an anisotropic radiation source on the collapse of a halo at high redshift. The radiation source is placed at a distance of 3 kpc (physical) from the collapsing object and is set to emit monochromatically in the center of the Lyman-Werner (LW) band. The LW radiation emitted from the high redshift source is followed self-consistently using ray tracing techniques. Due to self-shielding, a small amount of H2 is able to form at the very center of the collapsing halo even under very strong LW radiation. Furthermore, we find that a radiation source, emitting < 1054 (∼103 J21) photons per second is required to cause the collapse of a clump of M ∼ 105 M. The resulting accretion rate onto the collapsing object is ∼ 0.25 M yr−1. Our results display significant differences, compared to the isotropic radiation field case, in terms of H2 fraction at an equivalent radius. These differences will significantly effect the dynamics of the collapse. With the inclusion of a strong anisotropic radiation source, the final mass of the collapsing object is found to be M ∼ 105 M. This is consistent with predictions for the formation of a supermassive star or quasi-star leading to a supermassive black hole.

Hide All
Bryan G. L. and The Enzo Collaboration. AstroPhysical Journal, 211:19, April 2014.
Dijkstra M. et al. Monthly Notices, 391:1961–1972, December 2008.
Mortlock D. J. et al. Nature, 474:616–619, June 2011.
Regan J. A. & Haehnelt M. G.. Monthly Notices, 393:858–871, March 2009.
Regan J. A. & Haehnelt M. G.. Monthly Notices, 396:343–353, June 2009.
Regan J. A. et al. Monthly Notices, 439:1160–1175, March 2014.
Regan J. A., Johansson P. H., & Wise J. H.. ArXiv e-prints:1407.4472, July 2014.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the International Astronomical Union
  • ISSN: 1743-9213
  • EISSN: 1743-9221
  • URL: /core/journals/proceedings-of-the-international-astronomical-union
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 113 *
Loading metrics...

* Views captured on Cambridge Core between 12th October 2016 - 20th January 2018. This data will be updated every 24 hours.