Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T16:04:58.454Z Has data issue: false hasContentIssue false

Hot star wind mass-loss rate predictions at low metallicity

Published online by Cambridge University Press:  30 October 2019

Jiří Krtička
Affiliation:
Ústav teoretické fyziky a astrofyziky, Masarykova univerzita, Brno, Czech Republic email: krticka@physics.muni.cz
Jiří Kubát
Affiliation:
Astronomický ústav, Akademie věd České republiky, Ondřejov, Czech Republic email: kubat@sunstel.asu.cas.cz
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Hot star winds are driven by the radiative force due to light absorption in lines of heavier elements. Therefore, the amount of mass lost by the star per unit of time, i.e., the mass-loss rate, is sensitive to metallicity. We provide mass-loss rate predictions for O stars with mass fraction of heavier elements 0.2 <Z/Z ≤ 1. Our predictions are based on global model atmospheres. The models allow us to predict wind terminal velocity and the mass-loss rate just from basic global stellar parameters. We provide a formula that fits the mass-loss rate predicted by our models as a function of stellar luminosity and metallicity. On average, the mass-loss rate scales with metallicity as (Z/Z)0.59. The predicted mass-loss rates agree with mass-loss rates derived from ultraviolet wind line profiles. At low metallicity, the rotational mixing affects the wind mass-loss rates. We study the influence of magnetic line blanketing.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481 CrossRefGoogle Scholar
Bestenlehner, J. M., Gräfener, G., Vink, J. S., et al . 2014, A&A, 570, A38 Google Scholar
Bouret, J.-C., Lanz, T., Martins, F., et al . 2013, A&A, 555, A1 Google Scholar
Bouret, J.-C., Lanz, T., Hillier, D. J., et al. 2015, MNRAS, 449, 1545 CrossRefGoogle Scholar
Krtika, J., & Kubát, J. 2014, A&A, 567, A63 Google Scholar
Krtika, J., & Kubát, J. 2017 A&A, 606, A31 Google Scholar
Krtika, J., & Kubát, J. 2018, A&A, 612, A20 Google Scholar
Kubát, J., Puls, J., & Pauldrach, A. 1999 A&A, 341, 587 Google Scholar
Martins, F., Schaerer, D., & Hillier, D. J. 2005, A&A, 436, 1049 Google Scholar
Massey, P., Bresolin, F., Kudritzki, R. P., Puls, J., & Pauldrach, A. W. A. 2004, ApJ, 608, 1001 CrossRefGoogle Scholar
Massey, P., Puls, J., Pauldrach, A. W. A. et al . 2005, ApJ, 627, 477 CrossRefGoogle Scholar
Mokiem, M. R., de Koter, A., Evans, C. J., et al . 2006, A&A, 456, 1131 Google Scholar
Ramrez-Agudelo, O. H., Sana, H., de Koter, A., et al . 2017, A&A, 600, A81 Google Scholar
Sabn-Sanjulián, C., Simón-Daz, S., Herrero, A., et al . 2017, A&A, 601, A79 Google Scholar
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2001, A&A, 369, 574 Google Scholar