Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T08:04:40.431Z Has data issue: false hasContentIssue false

Properties of X-ray emission of an aspherical shock breakout

Published online by Cambridge University Press:  17 October 2017

Yukari Ohtani
Affiliation:
Center for Computational Astrophysics, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan email: yukari.ohtani@nao.ac.jp
Akihiro Suzuki
Affiliation:
Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan email: asuzuki@kusastro.kyoto-u.ac.jp
Toshikazu Shigeyama
Affiliation:
Research Center for the Early Universe, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan email: shigeyama@resceu.s.u-tokyo.ac.jp
Masaomi Tanaka
Affiliation:
Division of Theoretical Astronomy, National Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588, Japan email: masaomi.tanaka@nao.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the relation between the emission properties of supernova shock breakout in the circumstellar matter (CSM) and the behavior of the shock. Using a Monte-Carlo method, we examine how the light curve and spectrum depends on the asphericity of the shock and bulk-Compton scattering, and compare the results with the observed properties of X-ray outburst (XRO) 080109/SN 2008D. We found that the rise and decay time of the X-ray light curve do not significantly depend on the degree of shock asphericity and the viewing angle in a steady and spherically symmetric CSM. The observed X-light curve and spectrum of XRO 080109 can be reproduced by considering the shock with a radial velocity of 60% of the speed of light, and the wind mass loss rate is about 5 × 10−4M.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Balberg, S. & Loeb, A. 2011, MNRAS, 414, 1715 Google Scholar
Couch, S. M., Pooley, D., Wheeler, J. C., & Milosavljević, M. 2011, ApJ, 727, 104 Google Scholar
Ensman, L. & Burrows, A. 1992, ApJ, 393, 742 Google Scholar
Matzner, C. D. & McKee, C. F. 1999, ApJ, 510, 379 Google Scholar
Matzner, C. D., Levin, Y., & Ro, S. 2013, ApJ, 779, 60 Google Scholar
Ohtani, Y., Suzuki, A., & Shigeyama, T. 2013, ApJ, 777, 113 Google Scholar
Salbi, P., Matzner, C. D., Ro, S., & Levin, Y. 2014, ApJ, 790, 71 CrossRefGoogle Scholar
Soderberg, A. M., Berger, E., Page, K. L., Schady, P., Parrent, J., Pooley, D., Wang, X.-Y., Ofek, E. O., Cucchiara, A., Rau, A., Waxman, E., Simon, J. D., Bock, D. C.-J., Milne, P. A., Page, M. J., Barentine, J. C., Barthelmy, S. D., Beardmore, A. P., Bietenholz, M. F., Brown, P., Burrows, A., Burrows, D. N., Byrngelson, G., Cenko, S. B., Chandra, P., Cummings, J. R., Fox, D. B., Gal-Yam, A., Gehrels, N., Immler, S., Kasliwal, M., Kong, A. K. H., Krimm, H. A., Kulkarni, S. R., Maccarone, T. J., Mészáros, P., Nakar, E., O’Brien, P. T., Overzier, R. A., de Pasquale, M., Racusin, J., Rea, N., & York, D. G. 2008, Nature, 453, 469 Google Scholar
Suzuki, A. & Shigeyama, T. 2010, ApJ, 717, 154 Google Scholar
Suzuki, A. & Shigeyama, T. 2010, ApJ, 719, 881 Google Scholar
Suzuki, A., Maeda, K., & Shigeyama, T. 2016, ApJ, 825, 92 Google Scholar
Svirski, G. & Nakar, E. 2014, ApJ, 788, 14 Google Scholar
Tanaka, M., Yamanaka, M., Maeda, K., Kawabata, K. S., Hattori, T., Minezaki, T., Valenti, S., Della Valle, M., Sahu, D. K., Anupama, G. C., Tominaga, N., Nomoto, K., Mazzali, P. A., & Pian, E. 2009, ApJ, 700, 1680 Google Scholar