Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-16T18:04:23.580Z Has data issue: false hasContentIssue false

Type Ia Supernovae from Sub-Chandrasekhar Mass White Dwarfs

Published online by Cambridge University Press:  17 January 2013

Stuart A. Sim
Affiliation:
Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611, Australia
Friedrich K. Röpke
Affiliation:
Universität Würzburg, Emil-Fischer-Str. 31, 97074 Würzburg, Germany Max-Planck-Institut für Astrophysik, Karl-Schwarzschildstr. 1, 85748 Garching, Germany
Markus Kromer
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschildstr. 1, 85748 Garching, Germany
Michael Fink
Affiliation:
Universität Würzburg, Emil-Fischer-Str. 31, 97074 Würzburg, Germany Max-Planck-Institut für Astrophysik, Karl-Schwarzschildstr. 1, 85748 Garching, Germany
Ashley J. Ruiter
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschildstr. 1, 85748 Garching, Germany
Ivo R. Seitenzahl
Affiliation:
Universität Würzburg, Emil-Fischer-Str. 31, 97074 Würzburg, Germany Max-Planck-Institut für Astrophysik, Karl-Schwarzschildstr. 1, 85748 Garching, Germany
Rüdiger Pakmor
Affiliation:
Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
Wolfgang Hillebrandt
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschildstr. 1, 85748 Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We argue that detonations of sub-Chandrasekhar mass white dwarfs can lead to bright explosions with light curves and spectra similar to those of observed Type Ia supernovae. Given that binary systems containing accreting sub-Chandrasekhar mass white dwarfs should be common, this suggests that a non-negligible fraction of the observed Type Ia supernova rate may arise from sub-Chandrasekhar mass explosions, if they can be ignited. We discuss aspects of how such explosions might be realized in nature and both merits and challenges associated with invoking sub-Chandrasekhar mass explosion models to account for observed Type Ia supernovae.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Arnett, W. D., Truran, J. W., & Woosley, S. E., 1971, ApJ, 165, 87Google Scholar
Benetti, S., et al., 2005, ApJ, 623, 1011CrossRefGoogle Scholar
Dan, M., Rosswog, S., Guillochon, J., & Ramirez-Ruiz, E., 2011, ApJ, 737, 89Google Scholar
Fink, M., Röpke, F. K., Hillebrandt, W., Seitenzahl, I. R., Sim, S. A., & Kromer, M., 2010, A&A, 514, 53Google Scholar
Guillochon, J., Dan, M., Ramirez-Ruiz, E., & Rosswog, S., 2010, ApJ, 709, 64Google Scholar
Höflich, P., Khokhlov, A., Wheeler, C. J., Phillips, M. M., Suntzeff, N. B., & Hamuy, M., 1996, ApJ, 472, L81Google Scholar
Kasen, D., Röpke, F. K., & Woosley, S. E., 2009, Nature, 460, 869Google Scholar
Kobayashi, C., Umeda, H., Nomoto, K., Tominaga, N., & Ohkubo, T., 2006, ApJ, 653, 1145Google Scholar
Krisciunas, K., Phillips, M. M., & Suntzeff, N. B., 2004, ApJ, 602, L81Google Scholar
Kromer, M. & Sim, S. A., 2009, MNRAS, 398, 1809CrossRefGoogle Scholar
Kromer, M., Sim, S. A., Fink, M., Röpke, F. K., Seitenzahl, I. R., & Hillebrandt, W., 2010, ApJ, 719, 1067Google Scholar
Livne, E. & Arnett, D., 1995, ApJ, 452, 62Google Scholar
Mazzali, P. A., Röpke, F. K., Benetti, S., & Hillebrandt, W., 2007, Science, 315, 825CrossRefGoogle Scholar
Nomoto, K., Thielemann, F.-K., & Yokoi, K., 1984, ApJ, 286, 644Google Scholar
Nomoto, K., Iwamoto, K., Nakasato, N., Thielemann, F.-K., Brachwitz, F., Tsujimoto, T., Kubo, Y., & Kishimoto, N., 1997, Nuclear Physics A, 621, 467CrossRefGoogle Scholar
Nugent, P., Phillips, M., Baron, E., Branch, D., & Hauschildt, P., 1995, ApJ, 455, L147CrossRefGoogle Scholar
Nugent, P., Baron, E., Branch, D., Fisher, A., & Hauschildt, P. H., 1997, ApJ, 485, 812Google Scholar
Pakmor, R., Kromer, M., Röpke, F. K., Sim, S. A., Ruiter, A. J., & Hillebrandt, W., 2010, Nature, 463, 61CrossRefGoogle Scholar
Pakmor, R., Hachinger, S., Röpke, F. K., & Hillebrandt, W., 2011, A&A, 528, 117Google Scholar
Pastorello, A., et al., 2007, MNRAS, 377, 1531Google Scholar
Pritchet, C. J. & Howell, D. A., Sullivan, M., 2008, ApJ, 683, 25Google Scholar
Ruiter, A. J., Belczynski, K., Sim, S. A., Hillebrandt, W., Fryer, C. L., Fink, M., & Kromer, M., 2011, MNRAS, in press (arXiv:1011.1407)Google Scholar
Seitenzahl, I. R., Meakin, C. A., Townsley, D. M., Lamb, D. Q., & Truran, J. W., 2009, ApJ, 696, 515Google Scholar
Seitenzahl, I. R., Ciaraldi-Schoolmann, F., & Röpke, F. K., 2011, MNRAS, 414, 2709Google Scholar
Sim, S. A., 2007, MNRAS, 375, 154Google Scholar
Sim, S. A., Röpke, F. K., Hillebrandt, W., Kromer, M., Pakmor, R., Fink, M., Ruiter, A. J., & Seitenzahl, I. R., 2010, ApJ, 714, L52Google Scholar
Stritzinger, M., Mazzali, P. A., Sollerman, J., & Benetti, S., 2006, A&A, 460, 793Google Scholar
van Kerkwijk, M. H., Chang, P., & Justham, S., 2010, ApJ, 722, L157Google Scholar
Woosley, S. E. & Weaver, T. A., 1994, ApJ, 423, 371Google Scholar
Woosley, S. E. & Kasen, D., 2011, ApJ, 734, 38Google Scholar