Skip to main content

Uniform Abel–Kreiss boundedness and the extremal behaviour of the Volterra operator

  • Alfonso Montes-Rodríguez (a1), Juan Sánchez-Álvarez (a1) and Jaroslav Zemánek (a2)

Let $V$ denote the classical Volterra operator. In this work, sharp estimates of the norm of $(I - V)^n$ acting on $L^p [0, 1]$, for $1 \leq p \leq \infty$, are obtained. As a consequence, $I - V$ acting on $L^p [0, 1]$, with $1 \leq p \leq \infty$, is power bounded if and only if $p = 2$. Thus the Volterra operator characterizes when $L^p [0, 1]$ is a Hilbert space. By means of sharp estimates of the $L^1$-norm of the $n$th partial sums of the generating function of the Laguerre polynomials on the unit circle, it is also proved that $I - V$ is uniformly Kreiss bounded on the spaces $L^p [0,1]$, for $1 \leq p \leq \infty$.

A bounded linear operator $T$ on a Banach space is said to be Kreiss bounded if there is a constant $C > 0$ such that $\Vert (T - \lambda)^{-1} \Vert \leq C( | \lambda | - 1)^{-1}$ for $| \lambda | > 1$. If the same upper estimate holds for each of the partial sums of the resolvent, then $T$ is said to be uniformly Kreiss bounded. This is, for instance, true for power bounded operators. For finite-dimensional Banach spaces, Kreiss' Matrix Theorem asserts that Kreiss boundedness is equivalent to $T$ being power bounded. Thus, in the infinite-dimensional setting, even a much stronger property than Kreiss boundedness still does not imply power boundedness. It is also shown that, for general operators, uniform Abel boundedness characterizes Cesàro boundedness and, as a consequence, uniform Kreiss boundedness is characterized in terms of a Cesàro type boundedness of order 1.

Hide All
This work was partially supported by ref. BFM2003-00034 of Ministerio de Ciencia y Tecnología and Junta de Andalucía FQM-260. The second author was also partially supported by a Marie Curie grant.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the London Mathematical Society
  • ISSN: 0024-6115
  • EISSN: 1460-244X
  • URL: /core/journals/proceedings-of-the-london-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 5 *
Loading metrics...

Abstract views

Total abstract views: 29 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd November 2017. This data will be updated every 24 hours.