Skip to main content Accessibility help
×
Home

Amino acid limitation regulates gene expression

  • Alain Bruhat (a1), Céline Jousse (a1) and Pierre Fafournoux (a1)

Abstract

In mammals, the plasma concentration of amino acids is affected by nutritional or pathological conditions. For example, an alteration in the amino acid profile has been reported when there is a deficiency of any one or more of the essential amino acids, a dietary imbalance of amino acids, or an insufficient intake of protein. We examined the role of amino acid limitation in regulating mammalian gene expression. Depletion of arginine, cystine and all essential amino acids leads to induction of insulin-like growth factor-binding protein-1 (IGFBP-1) mRNA and protein expression in a dose-dependent manner. Moreover, exposure of HepG2 cells to amino acids at a concentration reproducing the amino acid concentration found in portal blood of rats fed on a low-protein diet leads to a significantly higher (P < 0·0002) expression of IGFBP-1. Using CCAAT/enhancer-binding protein homologous protein (CHOP) induction by leucine deprivation as a model, we have characterized the molecular mechanisms involved in the regulation of gene expression by amino acids. We have shown that leucine limitation leads to induction of CHOP mRNA and protein. Elevated mRNA levels result from both an increase in the rate of CHOP transcription and an increase in mRNA stability. We have characterized two elements of the CHOP gene that are essential to the transcriptional activation produced by an amino acid limitation. These findings demonstrate that an amino acid limitation, as occurs during dietary protein deficiency, can induce gene expression. Thus, amino acids by themselves can play, in concert with hormones, an important role in the control of gene expression.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Amino acid limitation regulates gene expression
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Amino acid limitation regulates gene expression
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Amino acid limitation regulates gene expression
      Available formats
      ×

Copyright

Corresponding author

*Corresponding Author: Dr Pierre Fafournoux, fax +33 473 62 45 70, email fpierre@clermont.inra.fr

Footnotes

Hide All

Contributed equally to the work presented in this paper.

Footnotes

References

Hide All
Baertl, JM, Placko, RP & Graham, GG (1974) Serum proteins and plasma free amino acids in severe malnutrition. American Journal of Clinical Nutrition 27, 733742.
Baker, J, Liu, JP, Robertson, EJ & Efstratiadis, A (1993) Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75, 7382.
Barlett, JD, Luethy, JD, Carlson, SG, Sollott, SJ & Holbrook, NJ (1992) Calcium ionophore A23187 induces expression of the growth arrest and DNA damage inducible CCAAT/enhancer-binding protein (C/EBP)-related gene gadd153, Journal of Biological Chemistry 267, 2046520470.
Binoux, M (1995) The IGF system in metabolism regulation. Diabetes and Metabolism 21, 330337.
Brismar, K, Gutniak, M, Povoa, G, Werner, S & Hall, K (1988) Insulin regulates the 35 kDa IGF binding protein in patients with diabetes mellitus. Journal of Endocrinological Investigation 11, 599602.
Bruhat, A, Jousse, C, Wang, XZ, Ron, D, Ferrara, M & Fafournoux, P (1997) Amino acid limitation induces expression of CHOP, a CCAAT/enhancer binding protein-related gene, at both transcriptional and post-transcriptional levels. Journal of Biological Chemistry 272, 1758817593.
Busby, WH, Snyder, DK & Clemmons, DR (1988) Radio-immunoassay of 26, 000-dalton plasma insulin-like growth factor-binding protein: control by nutritional variables. Journal of Clinical Endocrinology and Metabolism 67, 1122511230.
Carlson, SG, Fawcett, TW, Barlett, JD, Bernier, M & Holbrook, NJ (1993) Regulation of the C/EBP-related gene gadd153 by glucose deprivation. Molecular and Cellular Biology 13, 47364744.
Cotterill, AM, Cowell, CT, Baxter, RC, McNeil, D & Silinik, M (1988) Regulation of the growth hormone-independent growth factor-binding protein in children. Journal of Clinical Endocrinology and Metabolism 67, 882887.
Coward, WA & Lunn, PG (1981) The biochemistry and physiology of kwashiorkor and marasmus. British Medical Bulletin 37, 1924.
Donovan, SM, Atilano, LC, Hintz, RL, Wilson, DM & Rosenfeld, RG (1991) Differential regulation of the insulin-like growth factors (IGF-I and -II) and IGF binding proteins during malnutrition in the neonatal rat. Endocrinology 129, 149157.
Fafournoux, P, Rémésy, C & Demigné, C (1990) Fluxes and membrane transport of amino acids in rat liver under different protein diets. American Journal of Physiology 259, E614E625.
Fornace, AJ, Alamo, J Jr & Hollander, MC (1988) DNA damage-inducible transcripts in mammalian cells. Proceedings of the National Academy of Sciences USA 85, 88008804.
Gay, E, Seurin, D, Babajko, S, Doublier, S, Cazillis, M & Binoux, M (1997) Liver-specific expression of human insulin-like growth factor binding protein-1 in transgenic mice: Repercussions on reproduction, ante- and perinatal mortality and postnatal growth. Endocrinology 138, 29372947.
Girard, J, Perdereau, D, Foufelle, F, Prip-Buus, C & Ferré, P (1994) Regulation of lipogenic enzyme gene expression by nutrients and hormones. FASEB Journal 8, 3642.
Grimble, RF & Whitehead, RG (1970) Fasting serum-amino acid patterns in kwashiorkor and after administration of different levels of protein. Lancet i, 918920.
Gurney, AL, Pak, EA, Liu, J, Giralt, M, McGrane, MM, Patel, YM, Crawford, DR, Nizielski, SE, Savon, S & Hanson, RW (1994) Metabolic regulation of gene transcription. Journal of Nutrition 124, 1533S1539S.
Jackson, AA & Grimble, RF (1990) Malnutrition and amino acid metabolism. In The Malnourished Child. Nestle Nutrition Workshop Series, vol. 19, pp. 7394 [Suskind, RM and Suskind, LL, editors]. New York: Vevey Raven Press.
Jousse, C, Bruhat, A, Ferrara, M & Fafournoux, P (1998) Physiological concentration of amino acids regulates insulin-like-growth-factor-binding protein 1 expression. Biochemical Journal 334, 147153.
Kilberg, MS, Hutson, RG & Laine, RO (1994) Amino acid-regulated gene expression in eukaryotic cells. FASEB Journal 8, 1319.
Kita, K, Tomas, FM, Owens, PC, Knowles, SE, Forbes, BE, Upton, Z, Hughes, R & Ballard, FJ (1996) Influence of nutrition on hepatic IGF-I mRNA levels and plasma concentrations of IGF-I and IGF-II in meat-type chickens. Journal of Endocrinology 149, 181190.
Lee, PDK, Conover, CA & Powell, DR (1993) Regulation and function of insulin-like growth factor-binding protein-1. Proceedings of the Society for Experimental Biology and Medicine 204, 429.
Lewitt, MS, Denyer, GS, Cooney, GJ & Baxter, RC (1991) Insulin-like growth factor-binding protein-1 modulates blood glucose levels. Endocrinology 129, 22542256.
Luethy, JD & Holbrook, NJ (1992) The pathway regulating GADD153 induction in response to DNA damage is independent of protein kinase C and tyrosine kinases. Cancer Research 54, 1902S1906S.
Palacin, M, Estévez, R, Bertran, J & Zorzano, A (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiological Review 78, 9691045.
Rajkumar, K, Barron, D, Lewitt, MS & Murphy, LJ (1995) Growth retardation and hyperglycemia in insulin-like growth factor binding protein-1 transgenic mice. Endocrinology 136, 40294034.
Rajkumar, K, Krsek, M, Dheen, ST & Murphy, LJ (1996) Impaired glucose homeostasis in insulin-like growth factor binding protein-1 transgenic mice. Journal of Clinical Investigation 98, 18181825.
Straus, DS (1994) Nutritional regulation of hormones and growth factors that control mammalian growth. FASEB Journal 8, 612.
Straus, DS, Burke, EJ & Marten, NW (1993) Induction of insulin-like growth factor binding protein-1 gene expression in liver of protein-restricted rats and in rat hepatoma cells limited for a single amino acid. Endocrinology 132, 10901100.
Straus, DS & Takemoto, CD (1990) Effect of dietary protein deprivation on insulin-like growth factor-I and -II, IGF binding protein-2, and serum albumin gene expression in rat. Endocrinology 127, 18491860.
Suikkari, AM, Koivisto, VA, Rutanen, EM, Yki-Järvinen, H, Karonen, SL & Seppälä, M (1988) Insulin regulates the serum levels of low molecular weight insulin-like growth factor-binding protein. Journal of Clinical Endocrinology and Metabolism 66, 266272.
Sylvester, SL, ap Rhys, CMJ, Luethy-Martindale, JD & Holbrook, NJ (1994) Induction of GADD153, a CCAAT-enhancer-binding protein (C/EBP)-related gene, during the acute phase response in rats. Journal of Biological Chemistry 269, 2011920125.
Towle, HC (1995) Metabolic regulation of gene transcription in mammals. Journal of Biological Chemistry 270, 2323523238.
Vance, ML, Hartman, ML & Thorner, MO (1992) Growth hormone and nutrition. Hormone Research 38, 8588.
Vaulont, S & Kahn, A (1994) Transcriptional control of metabolic regulation genes by carbohydrates. FASEB Journal 8, 2835.
Walton, PE, Dunshea, FR & Ballard, FJ (1995) In vivo actions of IGF analogues with poor affinities for IGFBPs: metabolic and growth effects in pigs of different ages and GH responsiveness. Proceedings of Growth Factor Research 6, 385395.
Wang, X-Z, Lawson, B, Brewer, JW, Zinszner, H, Sanjay, A, Mi, L-J, Boorstein, R, Kreibich, G, Hendershot, LM & Ron, D (1996) Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP). Molecular and Cellular Biology 16, 42734280.
Wang, ZZ, Kuroda, M, Sok, J, Batchvarova, N, Kimmel, R, Chung, P, Zinszner, H & Ron, D (1988) Identification of novel stress-induced genes downstream of chop. EMBO Journal 17, 36193630.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed