Hostname: page-component-7d684dbfc8-2bg86 Total loading time: 0.001 Render date: 2023-10-02T04:25:06.743Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Effects of exercise training in the elderly: impact of progressive-resistance training on skeletal muscle and whole-body protein metabolism

Published online by Cambridge University Press:  28 February 2007

Roger A Fielding
Department of Health Sciences, Boston University, Sargent College of Allied Health Professions, and Human Physiology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
Rights & Permissions [Opens in a new window]


Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Symposium on ‘Nutrition for the elderly’
Copyright © The Nutrition Society 1995


Aniansson, A. Grimby, G. & Rundgren, A. (1980). Isometric and isokinetic quadriceps muscle strength in 70-year-old men and women. Siucandinavian Journal of Rehabilitation Medicine 12, 161168.Google ScholarPubMed
Aniansson, A. & Gustafsson, E. (1981). Physical training in elderly men. Clinical Physiology 1, 8798.CrossRefGoogle Scholar
Astrand, I. (1960). Aerobic work capacity in men and women with special reference to age. Journal of Applied Physiology 169, 192.Google Scholar
Bassel, E. J. Bendal, M. J. & Pearson, M. (1988). Muscle strength in the triceps surae and objectively measured customary walking activity in men and women over 65 years of age. Clinical Science 74, 8589.CrossRefGoogle Scholar
Bassey, E. J. & Short, A. H. (1990). A new method for measuring power output in a single leg extension: feasibility, reliability, and validity. European Journal of Applied Physiology 60, 385390.CrossRefGoogle Scholar
Borkan, G. A. & Norris, A. H. (1977). Fat redistribution and the changing body dimensions of the adult male. Human Biobgy 49, 495514.Google ScholarPubMed
Bortz, W. M. (1982). Disuse and aging. Journal of the American Medical Association 248, 12031208.CrossRefGoogle ScholarPubMed
Brown, A. B. McCartney, N. & Sale, D. G. (1990). Positive adaptations to weightlifting training in the elderly. Journal of Applied Physiology 69, 17251733.CrossRefGoogle Scholar
Campbell, W. W. Crim, M. C. Young, V. R. & Evans, W. J. (1994). Increased energy requirements and changes in body composition with resistance training in older adults. American Journal of Clinical Nutrition 60, 167175.CrossRefGoogle ScholarPubMed
Carraro, F., Stuart, C. A., Hartl, W. H., Rosenblatt, J. & Wolfe, R. R. (1990). Effect of exercise and recovery on muscle protein synthesis in human subjects. American Journal of Physiology 259, E470E476.Google ScholarPubMed
Charette, S. L., McEvoy, L., Pyka, G., Snow-Harter, C., Guido, D., Weswell, R. A. & Marcus, R. (1991). Muscle hypertrophy response to resistance training in older women. Journal of Applied Physiology 70, 19121916.CrossRefGoogle ScholarPubMed
Chesley, A., MacDougall, J. D., Tarnopolsky, M. A., Atkinson, S. A. & Smith, K. (1992). Changes in human muscle protein synthesis after resistance exercise. Journal of Applied Physiology 73, 13831388.CrossRefGoogle ScholarPubMed
Cohn, S. H., Vartsky, D., Yasumura, S., Savitsky, A., Zanzi, I., Vaswani, A. & Ellis, K. J. (1980). Compartmental body composition based on total-body, potassium, and calcium. American Journal of Physiology 239, E524ES30.Google ScholarPubMed
Craig, B. W., Everhart, J. & Brown, R. (1989). The influence of high-resistance training on glucose tolerance in young and elderly subjects. Mechanisms of Ageing Development 49, 147157.CrossRefGoogle Scholar
DeLorme, T. L. (1945). Restoration of muscle power by heavy resistance exercises. Journal of Bone and Joint Surgery 27, 645667.Google Scholar
DeWyss, W. D., Begg, C. & Lavin, P. T. (1980). Prognostic effect of weight loss prior to chemotherapy in cancer patients. American Journal of Medicine 69, 491497.CrossRefGoogle Scholar
Dupler, T. L. & Cortes, C. (1993). Effects of a whole-body resistive training regimen in the elderly. Gerontology 39, 314319.CrossRefGoogle ScholarPubMed
Essen-Gustavsson, B. & Borges, O. (1986). Histochemical and metabolic characteristics of human skeletal muscle in relation to age. Acta Physiological Scandinavica 126, 107114.CrossRefGoogle Scholar
Evans, W. J. & Campbell, W. W. (1993). Sarcopenia and age-related changes in body composition and functional capacity. Journal of Nutrition 123, 465468.CrossRefGoogle ScholarPubMed
Fiatarone, M. A., Marks, E. C., Ryan, N. D., Meredith, C. N., Lipsitz, L. A. & Evans, W. J. (1990). High-intensity strength training in nonagenarians. Effects on skeletal muscle. Journal of the American Medical Association 263, 30293034.CrossRefGoogle ScholarPubMed
Fiatarone, M. A., O'Neill, E. F., Ryan, N. D., Clements, K. M., Solares, G. R., Nelson, M. E., Roberts, S. B., Kehayias, J. J., Lipsitz, L. A. & Evans, W. J. (1994). Exercise training and nutritional supplementation for physical frailty in very elderly people. New England Journal of Medicine 330, 17691775.CrossRefGoogle ScholarPubMed
Flegg, J. L. & Lakatta, E. G. (1988). Role of muscle loss in the age-associated reduction in VO2max. Journal of Applied Physiology 65, 11471151.CrossRefGoogle Scholar
Frontera, W. R., Meredith, C. N., O'Reilly, K. P. & Evans, W. J. (1990). Strength training and determinants of VO2max in older men. Journal of Applied Physiology 68, 329333.CrossRefGoogle ScholarPubMed
Frontera, W. R., Meredith, C. N., O'Reilly, K. P., Knuttgen, H. G. & Evans, W. J. (1988). Strength conditioning in older men: skeletal muscle hypertrophy and improved function. Journal of Applied Physiology 64, 10381044.CrossRefGoogle ScholarPubMed
Gontzea, I., Sutzescu, P. & Dumitrache, S. (1974). The influence of muscle activity on nitrogen balance and the need of man for proteins. Nutrition Reports International 10, 3543.Google Scholar
Grimby, G., Danneskiold-Samsoe, B., Hvid, K. & Saltin, B. (1982). Morphology and enzymatic capacity in leg muscles in 78–81-year-old men and women. Acta Physiological Scandinavica 115, 125134.CrossRefGoogle ScholarPubMed
Hagberg, J., Graves, J. E., Limacher, M., Woods, D. R., Leggett, S. H., Cononie, C., Gruber, J. J. & Pollock, M. L. (1989). Cardiovascular responses of 70- to 79-yr-old men and women. Journal of Applied PhySiology 66, 25892594.CrossRefGoogle ScholarPubMed
Jette, A. M. & Branch, L. G. (1981). The Framingham Disability Study: II. Physical disability among the aging. American Journal of Public Health 71, 12111216.CrossRefGoogle Scholar
Kallman, D. A., Plato, C. C. & Tobin, J. D. (1990). The role of muscle loss in the age-related decline of grip strength: cross-sectional and longitudinal perspectives. Journal of Gerontology 45, M82M88.CrossRefGoogle ScholarPubMed
Kasperek, G. J., Dohn, G. L. & Snider, R. D. (1985). Activation of branched-chain keto acid dehydrogenase by exercise. American Journal of Physiology 248, R166R171.Google ScholarPubMed
Klitgaard, H., Mantoni, M., Schiaffino, S., Ausoni, S., Gorza, L., Laurent-Winter, C., Schnohr, P. & Saltin, B. (1990). Function, morphology and protein expression of ageing skeletal muscle: a cross-sectional study of elderly men with different training backgrounds. Acta Physiological Scandinavica 140, 4154.CrossRefGoogle ScholarPubMed
Koffler, K. H., Menkes, A., Redmond, R. A., Whitehead, W. E., Pratley, R. E. & Hurley, B. F. (1992). Strength training accelerates gastrointestinal transit in middle-aged and older men. Medicine and Science in Sports and Exercise 24, 415419.CrossRefGoogle ScholarPubMed
Lamont, L. S., Patel, D. G. & Kalhan, S. C. (1990). Leucine kinetics in endurance-trained humans. Journal of Applied Physiology 69, 16.CrossRefGoogle ScholarPubMed
Larsson, L. (1982). Physical training effects on muscle morphology in sedentary males at different ages. Medicine and Science in Sports and Exercise 14, 203206.CrossRefGoogle ScholarPubMed
Larsson, L. (1983). Histochemical characteristics of human skeletal muscle during aging. Acta Physiological Scandinavica 117, 469471.CrossRefGoogle ScholarPubMed
Larsson, L., Grimby, G. & Karlsson, J. (1979). Muscle strength and speed of movement in relation to age and muscle morphology. Journal of Applied Physiology 46, 451456.CrossRefGoogle ScholarPubMed
Lemon, P. W. R., Tarnopolsky, M. A., MacDougall, J. D. & Atkinson, S. A. (1992). Protein requirements and muscle mass/strength changes during intensive training in novice bodybuilders. Journal of Applied Physiology 73, 767775.CrossRefGoogle ScholarPubMed
Lexell, J., Henriksson-Larsen, K., Wimblod, B. & Sjostrom, M. (1983). Distribution of different fiber types in human skeletal muscles: Effects of aging studied in whole muscle cross sections. Muscle Nerve 6, 588595.CrossRefGoogle ScholarPubMed
MacDougall, J. D. (1986). Adaptability of muscle to strength training – a cellular approach. In Biochemistry of Exercise, vol. 6, pp. 501513 [Saltin, B., editor]. Champaign, Ill: Human Kinetics.Google Scholar
McGandy, R. B., Barrows, C. H., Spanias, A., Meredith, A., Stone, J. L. & Norris, A. H. (1966). Nutrient intake and energy expenditure of men of different ages. Journal of Gerontology 21, 581587.CrossRefGoogle Scholar
Meredith, C. N., Frontera, W. R., O'Reilly, K. P. & Evans, W. J. (1992). Effect of diet on body composition changes during strength training in elderly men. Journal of the American Geriatric Society 40, 155162.CrossRefGoogle ScholarPubMed
Moritani, T. & DeVries, H. (1980). Potential for gross muscle hypertrophy in older men. Journal of Gerontology 35, 672682.CrossRefGoogle ScholarPubMed
Nevitt, M. C., Cummings, S. R., Kidd, S. & Black, D. (1989). Risk factors for current nonsyncopal falls: a prospective study. Journal of the American Medical Association 261, 26632668.CrossRefGoogle Scholar
Parizkova, J. (1974). Body composition and exercise during growth and development. Physical Activity Human Growth and Development, [Rarick, G. L., editor]. New York: Academic Press.Google Scholar
Pratley, R., Nicklas, B., Rubin, M., Miller, J., Smith, A., Smith, M., Hurley, B. & Goldberg, A. (1994). Strength training increases resting metabolic rate and norepinephrine levels in healthy 50- to 65-yr-old men. Journal of Applied Physiology 76, 133137.CrossRefGoogle ScholarPubMed
Pyka, G., Lindenberger, E., Charette, S. & Marcus, R. (1994). Muscle strength and fiber adaptations to a year-long resistance training program in elderly men and women. Journal of Gerontology 49, M22M27.CrossRefGoogle ScholarPubMed
Rennie, M. J., Edwards, R. H. T., Krywawych, S., Davies, C. T. M., Halliday, D., Waterlow, J. C. & Millward, D. J. (1981). Effect of exercise on protein turnover in man. Clinical Science 62, 627639.CrossRefGoogle Scholar
Saltin, B. & Rowell, L. B. (1980). Functional adaptations to physical activity and inactivity. Federation Proceedings 39, 15061513.Google ScholarPubMed
Tarnopolsky, M. A., Atkinson, S. A., MacDougall, J. D., Chesley, A., Phillips, S. & Schwarcz, H. P. (1992). Evaluation of protein requirements for trained strength athletes. Journal of Applied Physiology 73, 19861995.CrossRefGoogle ScholarPubMed
Tzankoff, S. P. & Norris, A. H. (1978). Longitudinal changes in basal metabolic rate in man. Journal of Applied Physiology 33, 536539.CrossRefGoogle Scholar
Whipple, R. H., Wolfson, L. I. & Amerman, P. M. (1987). The relationship of knee and ankle weakness to falls in nursing home residents: an isokinetic study. Journal of the American Geriatric Society 35, 1320.CrossRefGoogle Scholar
Wilmore, J. H., Parr, R. B., Ward, P., Vodak, P. A., Barstow, T. J., Pipes, T. V., Grimditch, G. & Leslie, P. (1978). Energy cost of circuit weight training. Medicine and Science in Sports and Exercise 10, 7578.Google ScholarPubMed
Wolfe, R. R., Goodenough, R. D., Wolfe, M. H., Royle, G. T. & Nadel, E. R. (1982). Isotopic analysis of leucine and urea metabolism in exercising humans. Journal of Applied Physiology 52, 458466.CrossRefGoogle ScholarPubMed
Wolfe, R. R., Wolfe, M. H., Nadel, E. R. & Shaw, J. H. F. (1984). Isotopic determination of amino acid-urea interactions in exercise in humans. Journal of Applied Physiology 56, 221229.CrossRefGoogle ScholarPubMed
Wong, T. S. & Booth, F. W. (1990 a). Protein metabolism in rat gastrocnemius muscle after stimulated chronic concentric exercise. Journal of Applied Physiology 69, 17091717.CrossRefGoogle ScholarPubMed
Wong, T. S. & Booth, F. W. (1990 b). Protein metabolism in rat tibialis anterior muscle after stimulated chronic eccentric exercise. Journal of Applied Physiology 69, 17181724.CrossRefGoogle ScholarPubMed
Yan, Z., Biggs, R. B. & Booth, F. W. (1993). Insulin-like growth factor immunoreactivity increases in muscle after acute eccentric contractions. Journal of Applied Physiology 74, 410414.CrossRefGoogle ScholarPubMed
Yarasheski, K. E., Zachwieja, J. J. & Bier, D. M. (1993). Acute effects of resistance exercise on muscle protein synthesis rate in young and elderly men and women. American Journal of Physiology 265, E216E214.Google Scholar