Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T08:38:56.458Z Has data issue: false hasContentIssue false

General integration and regulation of metabolism at the organ level

Published online by Cambridge University Press:  28 February 2007

M. Elia
Affiliation:
Dunn Clinical Nutrition Centre, Hills Road, Cambridge CB2 2DH
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Meeting Report
Copyright
Copyright © The Nutrition Society 1995

References

Acker, H., Dufau, E., Haber, J. & Sylvester, D. (1989). Indications to an NADPH oxidase as a possible pO2 sensor in the rat carotid body. FEBS Letters 256, 7578.CrossRefGoogle Scholar
Andersen, P. & Saltin, B. (1986). Maximal perfusion of skeletal muscle in man. Journal of Physiology 62, 12851298.Google Scholar
Anon (1985). Intestinal ornithine synthesis from glutamic acid. Nutrition Reviews 43, 119121.Google Scholar
Baron, A. D. & Brechtel, G. (1993). Insulin differentially regulates systemic and skeletal muscle vascular resistance. American Journal of Physiology 265, E61E67.Google ScholarPubMed
Baron, A. D., Steinberg, H., Brechtel, G. & Johnson, A. (1994). Skeletal muscle blood flow independently modulates insulin mediated glucose uptake. American Journal of Physiology 266, E248E253.Google ScholarPubMed
Bény, J.-L. & Pacicca, C. (1994). Bidirectional electrical communication between smooth muscle and endothelial cells in the pig coronary artery. American Journal of Physiology 266, H1465H1492.Google ScholarPubMed
Britton, S. L., Metting, P. J., Ronau, T. F., Strader, J. R. & Weldy, D. L. (1985). Autoregulation and hind limb blood flow in conscious dogs. Journal of Physiology 368, 409422.CrossRefGoogle ScholarPubMed
Brown, M. M., Wade, J. P. H. & Marshall, J. (1985). Fundamental importance of arterial oxygen content in the regulation of cerebral blood flow in man. Brain 108, 8193.CrossRefGoogle ScholarPubMed
Brundin, T., Thorne, A. & Wahren, J. (1992). Heat leakage across the abdominal wall and meal induced thermogenesis in normal weight and obese subjects. Metabolism 41, 4955.CrossRefGoogle ScholarPubMed
Brundin, T. & Wahren, J. (1991). Influence of a mixed meal on splanchnic and interscapular energy expenditure in humans. American Journal of Physiology 260, E232E237.Google ScholarPubMed
Bulow, J. & Madsen, J. (1976). Adipose tissue blood flow during prolonged heavy exercise. Pflügers Archives 363, 231236.CrossRefGoogle ScholarPubMed
Bulow, J. & Madsen, J. (1981). Influence of blood flow on fatty acid mobilization from lipolytically active adipose tissue. Pflügers Archives 390, 169174.CrossRefGoogle ScholarPubMed
Correl, J. W. (1987). Adipose tissue: ability to respond to nerve stimulation in vitro. Science 140, 387388.CrossRefGoogle Scholar
Daly, M. de B., Lambertsen, G. J. & Schweitzer, A. (1954). Observations on the volume of blood flow and oxygen utilization of the carotid body in the cat. Journal of Physiology 125, 6789.CrossRefGoogle Scholar
Daut, J., Mehrke, G., Nees, S. & Newman, W. H. (1988). Passive electrical properties and electrogenic sodium transport in cultured guinea pig coronary endothelial cells. Journal of Physiology 102, 237254.CrossRefGoogle Scholar
DeLuca, H. D. (1993). Vitamin D: 1993. Nutrition Today 28, 611.CrossRefGoogle Scholar
Dietrich, H. A. (1989). Effect of locally applied epinephrine and norepinephrine on blood flow diameter in capillaries of rat mesentery. Microvascular Research 38, 125135.CrossRefGoogle ScholarPubMed
Dietrich, H. A. & Tyml, K. (1992). Capillary as a communicating medium. Microvascular Research 42, 8799.CrossRefGoogle Scholar
Donald, K. W., Wormald, P. N., Taylor, S. H. & Bishop, J. M. (1957). Changes in the oxygen content of femoral venous blood and leg blood flow during leg exercise in relation to cardiac output response. Clinical Science 16, 567591.Google ScholarPubMed
Eisman, J. A., Koga, M., Sutherland, R. L., Barkla, D. H. & Tutton, P. J. M. (1989). 1,25-Dihydroxyvitamin D, and the regulation of human cancer cell replication. Proceedings of the Society for Experimental Biology and Medicine 191, 221226.CrossRefGoogle Scholar
Elia, M. (1992 a). The inter-organ flux of substrates in fed and fasted man as measured by arterio-venous balance studies. Nutrition Research Reviews 4, 331.CrossRefGoogle Scholar
Elia, M. (1992 b). Glutamine in parenteral nutrition. International Journal of Food Sciences and Nutrition 43, 4759.CrossRefGoogle Scholar
Elia, M. (1993). Glutamine metabolism in human adipose tissue in vivo. Clinical Nutrition 12, 5153.CrossRefGoogle ScholarPubMed
Elia, M., Folmer, P., Schlatmann, A., Goren, A. & Austin, S. (1988 a). Carbohydrate, fat and protein metabolism in muscle and in the whole body of man after mixed meal ingestion. Metabolism 37, 542551.CrossRefGoogle Scholar
Elia, M., Folmer, P., Schlatmann, A., Goren, A. & Austin, S. (1988 b). Amino acid metabolism in muscle and in the whole body of man before and after ingestion of a single meal. American Journal of Clinical Nutrition 49, 12031210.CrossRefGoogle Scholar
Elia, M. & Livesey, G. (1992). Energy expenditure and fuel selection in biological systems: the theory and practice of calculations based on indirect calorimetry and tracer methods. International Review of Nutrition and Dietetics 70, 68131.Google ScholarPubMed
Elia, M., Wood, S., Khan, K. & Pullicino, E. (1990). Ketone body metabolism in lean male adults during short-term starvation with particular reference to forearm muscle metabolism. Clinical Science 78, 579584.CrossRefGoogle ScholarPubMed
Eyzaguirre, C., Fitzgerald, R., Lahiri, S. & Zapata, P. (1983). Arterial chemoreceptors. In Handbook of Physiology, Section 2, vol. 3, The Cardiovascular System, pp. 557621 [Shepherd, J. T., Abboud, F. M. and Geiger, S. R., editors]. Bethesda, Maryland: American Physiological Society.Google Scholar
Folklow, B., Gaskell, P. & Waaler, B. A. (1970). Blood flow through limb muscles during heavy rhythmic exercise. Acta Physiologica Scandinavica 80, 6172.CrossRefGoogle Scholar
Fox, P. T. & Raichle, M. E. (1986). Focal uncoupling of cerebral blood flow and oxidative metabolism during somato-sensory stimulation in human subjects. Proceedings of the National Academy of Sciences, USA 83, 11401144.CrossRefGoogle Scholar
Fox, P. T., Raichle, M. E., Mintun, M. A. & Dence, C. (1988). Non-oxidative glucose consumption during focal physiologic activity. Science 41, 462464.CrossRefGoogle Scholar
Frayn, K. N., Shadid, S., Hamlani, R., Humphreys, S. M., Clark, M. L., Fielding, B. A., Boland, O. & Coppack, S. W. (1994). Regulation of fatty acid movement in human adipose tissue in the post-absorptive-to-post-prandial transition. American Journal of Physiology 266, E308E317.Google ScholarPubMed
Gardner, D. K. & Leese, H. J. (1986). Non-invasive measurement of nutrient uptake by single cultured pre-implantation mouse embyros. Human Reproduction 1, 2527.CrossRefGoogle Scholar
Guyton, A. (1986). Capillary dynamics and exchange of fluid between the blood and intestitial fluid. Textbook of Medical Physiology, pp. 348360. London: W. B. Saunders Co.Google Scholar
Haddy, F. J. & Scott, J. B. (1975). Metabolic factors in peripheral circulating regulation. Federation Proceedings 34, 20062011.Google ScholarPubMed
Hardy, K., Handyside, A. H. & Winston, R. M. L. (1989). The human blastocyst: cell number, death and allocation during late pre-implantation development in vitro. Development 107, 597604.CrossRefGoogle Scholar
Hodgetts, V., Coppack, S. W., Frayn, K. N. & Hockaday, T. D. R. (1991). Factors controlling fat mobilization from human subcutaneous adipose tissue during exercise. Journal of Applied Physiology 71, 445451.CrossRefGoogle ScholarPubMed
Holick, M. F. (1989). 1,25-Dihydroxyvitamin D and the skin: a unique application for the treatment of psoriasis. Proceedings of the Society for Experimental Biology and Medicine 191, 246.CrossRefGoogle Scholar
Huttner, I., Boutet, M. & More, R. (1973). Gap junctions in arterial endothelium. Journal of Cell Biology 57, 247252.CrossRefGoogle ScholarPubMed
Jackson, W. F. (1987). Arteriolar oxygen reactivity, where is the sensor? American Journal of Physiology 253, H1120H1126.Google ScholarPubMed
Jackson, W. F. (1993). Arteriolar tone is determined by activity of ATP-sensitive potassium channels. American Journal of Physiology 265, H1797H1803.Google ScholarPubMed
Kovach, A. G. B., Rosell, S., Sandor, P., Koltay, E., Kovach, E. & Tomka, N. (1970). Blood flow, oxygen consumption, and free fatty acid release in subcutaneous adipose tissue during hemorrhagic shock in control and phenoxybenzamine-treated dogs. Circulation Research 26, 733741.CrossRefGoogle ScholarPubMed
Kurpad, A., Khan, K., Calder, A. G., Coppack, S., Frayn, K., Macdonald, I. & Elia, M. (1994). Effect of noradrenaline on glycerol turnover and lipolysis in the whole body and subcutaneous abdominal adipose tissue in vivo. Clinical Science 86, 177184.CrossRefGoogle Scholar
Laakso, M., Edelman, S. V., Brechtel, G. & Baron, A. D. (1990). Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man: a novel mechanism for insulin resistance. Journal of Clinical Investigation 85, 18441852.CrossRefGoogle Scholar
Lacey, J. M. & Wilmore, D. W. (1990). Is glutamine a conditionally essential amino acid? Nutrition Reviews 48, 297304.CrossRefGoogle ScholarPubMed
Larson, D. M. & Sheridan, J. D. (1982). Intercellular junctions and transfer of small molecules in primary vascular endothelial cultures. Journal of Cell Biology 92, 183191.CrossRefGoogle ScholarPubMed
Laughlin, M. H. (1987). Skeletal muscle blood flow capacity. Role of muscle pump in exercise hyperemia. American Journal of Physiology 253, H993H1004.Google ScholarPubMed
Leese, H. J. & Barton, A. M. (1984). Pyruvate and glucose uptake by mouse ova and pre-implantation embryos. Journal of Reproduction and Fertility 72, 913.CrossRefGoogle Scholar
Li, J., Stillman, S., Clore, J. N. & Blackard, W. G. (1993). Skeletal muscle lipids and glycogen mask substrate competition (Randle cycle). Metabolism 42, 451456.CrossRefGoogle ScholarPubMed
MacDonald, M. L. & Rogers, G. R. (1984). Nutrition of the domestic cat, a mammalian carnivore. Annual Review of Nutrition 4, 521562.CrossRefGoogle ScholarPubMed
Madsen, J., Bulow, J. & Nielsen, N. E. (1986). Inhibition of fatty acid mobilization by arterial free fatty acid concentration. Acta Physiologica Scandinavica 127, 166.CrossRefGoogle ScholarPubMed
Marshall, J. M. & Tandon, H. C. (1984). Direct observations of muscle arterioles and venules following contraction of skeletal muscle fibres in the rat. Journal of Physiology 350, 447459.CrossRefGoogle ScholarPubMed
Meijer, G. A. L., van der Meulen, J. & Vuuren, A. M. (1993). Glutamine is a potentially limiting amino acid for milk production in dairy cows, a hypothesis. Metabolism 42, 358364.CrossRefGoogle ScholarPubMed
Nakhostine, N. & Lamontagne, D. (1993). Adenosine contributes to hypoxia induced vasodilation through ATP-sensitive K+ channel activation. American Journal of Physiology 265, H1289H1293.Google ScholarPubMed
Nordie, R. C. (1985). Fine tuning of blood glucose concentrations. Trends in Biochemical Science 10, 7075.CrossRefGoogle Scholar
Nuutila, P., Koivista, V. A., Knuuti, J., Ruotsalainen, V., Teras, M., Haaparanta, M., Bergman, J., Solin, O., Voipio-Pulkki, L.-M., Wegelius, V. & Yki-Jarvinen, H. (1992). Glucose-free fatty acid cycle operates in human heart and skeletal muscle in vivo. Journal of Clinical Investigation 28, 897916.Google Scholar
Owen, O. E., Morgan, A. P. & Kemp, H. G. (1967). Brain metabolism during fasting. Journal of Clinical Investigation 46, 15891595.CrossRefGoogle ScholarPubMed
Peterson, J., Bihain, B. E., Bengtsson-Olivecrona, G., Deckelbaum, R. J., Carpentier, Y. A. & Olivecrona, J. (1990). Fatty acid control of lipoprotein lipase: a link between energy metabolism and lipid transport. Proceedings of the National Academy of Sciences, USA 87, 909913.CrossRefGoogle ScholarPubMed
Potts, J. T., Shi, X. R. & Raven, P. B. (1993). Carotid baroreflex responsiveness during dynamic exercise in humans. American Journal of Physiology 265, H1928H1938.Google ScholarPubMed
Randle, P. J., Garland, P. B., Hales, C. N. & Newsholme, E. A. (1963). The glucose fatty acid cycle: its role in insulin sensitivity and the metabolic disturbances in diabetes mellitus. Lancet i, 785789.CrossRefGoogle Scholar
Robinson, A. M. & Williamson, D. H. (1980). Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiological Reviews 60, 143186.CrossRefGoogle ScholarPubMed
Roediger, W. E. W. (1986). Metabolic basis of starvation diarrhoea: implications for treatment. Lancet i, 10821085.CrossRefGoogle Scholar
Rofe, A. M. & Williamson, D. H. (1983). Mechanism for the ‘anti-lipolytic’ action of vasopressin in the starved rat. Biochemical Journal 212, 899902.CrossRefGoogle ScholarPubMed
Rogers, Q. R. & Phang, J. M. (1985). Deficiency of pyrroline-5-carboxylate synthase in the intestinal mucosa of the cat. Journal of Nutrition 115, 146150.CrossRefGoogle ScholarPubMed
Romjin, J. A., Coyle, L., Sidossis, L. S., Gastaldelli, A., Horowitz, J. F., Endert, E. & Wolfe, R. R. (1993). Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. American Journal of Physiology 265, E380E391.Google Scholar
Rowell, L. B., Saltin, B., Kiens, B. & Christensen, N. J. (1986). Is peak blood flow in humans even higher during exercise and hypoxemia. American Journal of Physiology 251, H1038H1044.Google ScholarPubMed
Schultz, T. A., Lewis, S. B., Westbie, D. K., Gerich, J. E., Rushakoff, R. J. & Wallin, J. D. (1977). Glucose delivery – a clarification of its role in regulating glucose uptake in rat skeletal muscle. Life Sciences 20, 733736.CrossRefGoogle ScholarPubMed
Sheriff, D. D., Rowell, L. B. & Scher, A. M. (1993). Is rapid rise in vascular conductance at onset of dynamic exercise due to muscle pump? American Journal of Physiology 265, H1227H1234.Google ScholarPubMed
Simionescu, M., Simionescu, N. & Palade, G. E. (1975). Segmental differentiations of cell junctions in the vascular endothelium. Journal of Cell Biology 67, 863885.CrossRefGoogle ScholarPubMed
Song, H. & Tyml, K. (1993). Evidence for sensing and integration of biological signals by the capillary network. American Journal of Physiology 265, H1235H1242.Google ScholarPubMed
Taylor, R., Price, T. B., Katz, L. D., Shulman, R. G. & Schulman, G. I. (1993). Direct measurement of change in muscle glycogen concentration after a mixed meal in normal subjects. American Journal of Physiology 265, E224E227.Google ScholarPubMed
Vanhoulte, P. M. (1991). Review in depth: endothelial cell mediators of vascular reactivity. Coronary Artery Disease 2, 291338.CrossRefGoogle Scholar
Vyska, K., Meyer, W., Stermmel, W., Notohamiprodjo, G., Minami, K., Machulla, H.-J., Gleichmann, U., Meyer, H. & Körfer, R. (1991). Fatty acid uptake in normal human myocardium. Circulation Research 69, 857870.CrossRefGoogle ScholarPubMed
Wade, O. L., Bishop, J. M. & Donald, K. W. (1962). Cardiac Output and Regional Blood Flow, pp. 95107. Oxford: Blackwell Scientific Publications.Google Scholar
Watt, P. W., Corbett, M. E. & Rennie, M. J. (1992). Stimulation of protein synthesis in pig skeletal muscle by infusion of amino acids during constant insulin availability. American Journal of Physiology 263, E452E460.Google ScholarPubMed
Wei, E. P., Randad, R. S., Levasseur, J. E., Abraham, D. J. & Kontos, H. A. (1993). Effect of local change in O2 saturation of hemoglobin on cerebral vasodilation from hypoxia and hypotension. American Journal of Physiology 265, H1439H1443.Google ScholarPubMed
Wilkinson, G. R. & Shand, D. G. (1975). A physiological approach to hepatic drug clearance. Clinical Pharmacology and Therapeutics 18, 377390.CrossRefGoogle ScholarPubMed
Wilmore, D. W. & Aulick, L. H. (1978). Metabolic changes in burned patients. Surgical Clinics of North America 58, 11731187.CrossRefGoogle ScholarPubMed
Winters, R. W., Heird, W. C. & Dell, R. B. (1983). Parenteral amino acid nutrition in infants. In Amino Acid Metabolism and Medical Applications, pp. 327336 [Blackburn, G. L., Grant, J. P. and Young, V. R., editors]. Boston, Bristol, London: John Wright PSG Inc.Google Scholar
Yki-Jarvinen, H., Puhakainen, I. & Koivisto, V. A. (1991 a). Effect of free fatty acids on glucose uptake and non-oxidative glycolysis across human forearm tissues in the basal state and during insulin stimulation. Journal of Clinical Endocrinology and Metabolism 72, 12681277.CrossRefGoogle Scholar
Yki-Jarvinen, H., Puhakainen, I., Saloranta, C., Groop, L. & Taskinen, M.-R. (1991 b). Demonstration of a novel feedback mechanism between FFA oxidative from intracellular intravascular sources. American Journal of Physiology 260, E680E684.Google ScholarPubMed
Yki-Jarvinen, H., Young, A. A., Lamkin, C. & Foley, J. E. (1987). Kinetics of glucose disposal in whole body and across the forearm in man. Journal of Clinical Investigation 79, 17131719.CrossRefGoogle ScholarPubMed