Skip to main content Accessibility help
Hostname: page-component-5c569c448b-w5x57 Total loading time: 0.259 Render date: 2022-07-05T06:32:49.943Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Nutrient effects: post-absorptive interactions

Published online by Cambridge University Press:  28 February 2007

Eric Jéquier
Institute of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
Rights & Permissions[Opens in a new window]


Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Meeting Report
Copyright © The Nutrition Society 1995


Abumrad, N. N., Cherrington, A. D., Williams, P. E., Lacy, W. W. & Rabin, D. (1982). Absorption and disposition of a glucose load in the conscious dog. American Journal of Physiology 242, E398E406.Google ScholarPubMed
Acheson, K. J., Flatt, J. P. & Jéquier, E. (1982). Glycogen synthesis versus lipogenesis after a 500 gram carbohydrate meal in man. Metabolism 31, 12341240.CrossRefGoogle ScholarPubMed
Acheson, K. J., Schutz, Y., Bessard, T., Anantharaman, K., Flatt, J. P. & Jéquier, E. (1988). Glycogen storage capacity and de novo lipogenesis during massive carbohydrate overfeeding in man. American Journal of Clinical Nutrition 48, 240247.CrossRefGoogle ScholarPubMed
Acheson, K. J., Schutz, Y., Bessard, T., Ravussin, E., Jéquier, E. & Flatt, J. P. (1984). Nutritional influences in lipogenesis and thermogenesis after a carbohydrate meal. American Journal of Physiology 246, E62E70.Google ScholarPubMed
Acheson, K. J., Thélin, A., Ravussin, E., Arnaud, M. J. & Jéquier, E. (1985). Contribution of 500 g naturally labelled 13C dextrin maltose to total carbohydrate utilization and the effect of antecedent diet in man. American Journal of Clinical Nutrition 41, 881890.CrossRefGoogle Scholar
Akanji, A. O. & Hockaday, T. D. R. (1990). Acetate tolerance and the kinetics of acetate utilization in diabetic and nondiabetic subjects. American Journal of Clinical Nutrition 51, 112118.CrossRefGoogle ScholarPubMed
Assimacopoulos-Jeannet, F. & Jeanrenaud, B. (1976). The hormonal and metabolic basis of experimental obesity. Clinical Endocrinology and Metabolism 5, 337365.CrossRefGoogle ScholarPubMed
Bjorkman, O., Eriksson, L. S., Nyberg, B. & Wahren, J. (1990). Gut exchange of glucose and lactate in basal state and after oral glucose ingestion in postoperative patients. Diabetes 39, 747751.CrossRefGoogle ScholarPubMed
Björntorp, P. & Sjöström, L. (1978). Carbohydrate storage in man: speculations and some quantitative considerations. Metabolism 27, 18531865.CrossRefGoogle ScholarPubMed
Blundell, J. E., Burley, V. J., Cotton, J. R. & Lawton, C. L. (1993). Dietary fat and the control of energy intake: evaluating the effects of fat on meal size and postmeal satiety. American Journal of Clinical Nutrition 57, Suppl., 772S778S.CrossRefGoogle ScholarPubMed
Boden, G., Jadali, F., White, J., Liang, Y., Mozzoli, M., Chen, X., Coleman, E. & Smith, C. (1991). Effects of fat on insulin-stimulated carbohydrate metabolism in normal men. Journal of Clinical Investigation 88, 960966.CrossRefGoogle ScholarPubMed
Bonadonna, R. C., Groop, L. C., Simonson, D. C. & DeFronzo, R. A. (1994). Free fatty acid and glucose metabolism in human aging: evidence for operation of the Randle cycle. American Journal of Physiology 266, E501E509.Google ScholarPubMed
Cahill, G. F. Jr (1971). Physiology of insulin in man. Diabetes 20, 785789.CrossRefGoogle ScholarPubMed
Calloway, D. H. & Spector, H. (1954). Nitrogen balance as related to calorie and protein intake in active young men. American Journal of Clinical Nutrition 2, 405411.CrossRefGoogle Scholar
Chiasson, J. L., Liljenquist, J. E., Finger, F. E. & Lacy, W. W. (1976). Differential sensitivity of glycogenolysis and gluconeogenesis to insulin infusion in the dog. Diabetes 25, 283291.CrossRefGoogle Scholar
Clore, J. N., Glickman, P. S., Nestler, J. E. & Blackard, W. G. (1991). In vivo evidence for hepatic autoregulation during FFA-stimulated gluconeogenesis in normal humans. American Journal of Physiology 261, E425E429.Google ScholarPubMed
Coppack, S. W., Fisher, R. M., Gibbons, G. F., Humphreys, S. M., McDonough, M. J., Potts, J. L. & Frayn, K. N. (1990). Postprandial substrate deposition in human forearm and adipose tissues in vivo. Clinical Science 79, 339348.CrossRefGoogle ScholarPubMed
Dreon, D. M., Frey-Hewitt, B., Ellsworth, N., Williams, P. T., Terry, R. B. & Wood, P. D. (1988). Dietary fat:carbohydrate ratio and obesity in middle-aged men. American Journal of Clinical Nutrition 47, 9951000.CrossRefGoogle ScholarPubMed
Ebiner, J. R., Acheson, K. J., Doerner, D., Maeder, E., Arnaud, M. J., Jéquier, E. & Felber, J. P. (1979). Comparison of carbohydrate utilization in man using indirect calorimetry and mass spectrometry after an oral load of 100 g naturally-labelled 13C-glucose. British Journal of Nutrition 41, 419429.CrossRefGoogle Scholar
Felber, J., Thiébaud, D., Maeder, E., Jéquier, E., Hendler, R. & DeFronzo, R. (1983). Effect of somatostatin-induced insulinopenia on glucose oxidation in man. Diabetologia 25, 325330.CrossRefGoogle ScholarPubMed
Felber, J. P., Ferrannini, E., Golay, A., Meyer, H., Thiéhaud, D., Curchod, B., Maeder, E., Jéquier, E. & DeFronzo, R. (1987). Role of lipid oxidation in pathogenesis of insulin resistance of obesity and type II diabetes. Diabetes 36, 13411350.CrossRefGoogle ScholarPubMed
Felber, J. P., Haesler, E. & Jéquier, E. (1993). Metabolic origin of insulin resistance in obesity with and without type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 36, 12211229.CrossRefGoogle ScholarPubMed
Flatt, J. P. (1987). Dietary fat, carbohydrate balance, and weight maintenance: effects of exercise. American Journal of Clinical Nutrition 45, 296306.CrossRefGoogle Scholar
Flatt, J. P. (1988). Importance of nutrient balance in body weight regulation. Diabetes Metabolism Review 4, 571581.CrossRefGoogle ScholarPubMed
Flatt, J. P., Ravussin, E., Acheson, K. J. & Jéquier, E. (1985). Effects of dietary fat on postprandial substrate oxidation and on carbohydrate and fat balances. Journal of Clinical Investigation 76, 10191024.CrossRefGoogle ScholarPubMed
Frayn, K. N., Coppack, S. W., Walsh, P. E., Butterworth, H. C., Humphreys, S. M. & Pedrosa, H. C. (1990). Metabolic responses of forearm and adipose tissues to acute ethanol ingestion. Metabolism 39, 958966.CrossRefGoogle ScholarPubMed
Froidevaux, F., Schutz, Y., Christin, L. & Jéquier, E. (1993). Energy expenditure in obese women before and during weight loss, after refeeding, and in the weight-relapse period. American Journal of Clinical Nutrition 57, 3542.CrossRefGoogle ScholarPubMed
Garza, C., Scrimshaw, N. S. & Young, V. R. (1978). Human protein requirements: interrelationships between energy intake and nitrogen balance in young men consuming the 1973 FAO/WHO safe level of protein, with added non-essential amino acids. Journal of Nutrition 108, 9096.CrossRefGoogle ScholarPubMed
Griffiths, A. J., Humphreys, S. M., Clark, M. L., Fielding, B. A. & Frayn, K. N. (1994). Immediate metabolic availability of dietary fat in combination with carbohydrate. American Journal of Clinical Nutrition 59, 5359.CrossRefGoogle ScholarPubMed
Groop, C., Bonadonna, R., Shank, M., Petrides, A. & DeFronzo, R. (1991). Role of free fatty acids and insulin in determining free fatty acid and lipid oxidation in man. Journal of Clinical Investigation 87, 8389.CrossRefGoogle ScholarPubMed
Haesler, E., Schneiter, Ph., Temler, E., Jéquier, E. & Tappy, L. (1994). Effects of infused amino acids and lipids on glucose metabolism in healthy lean humans. International Journal of Obesity 18, 307312.Google ScholarPubMed
Hellerstein, M. K., Christiansen, M., Kaempfer, S., Kletke, C., Wu, K., Reid, J. S., Mulligan, K., Hellerstein, N. S. & Shackleton, C. H. L. (1991). Journal of Clinical Investigation 87, 18411852.CrossRefGoogle Scholar
Kelley, D. E., Mokan, M., Simoneau, J. A. & Mandarino, L. J. (1993). Interaction between glucose and free fatty acid metabolism in human skeletal muscle. Journal of Clinical Investigation 92, 9198.CrossRefGoogle ScholarPubMed
Kendall, A., Levitzky, D. A., Strupp, B. J. & Lissner, L. (1991). Weight loss on a low-fat diet: consequences of the imprecision of the control of food intakes in humans. American Journal of Clinical Nutrition 53, 11241129.CrossRefGoogle Scholar
Lean, M. E. J. & James, W. P. T. (1988). Metabolic effect of isoenergetic nutrient exchange over 24 hours in relation to obesity in women. International Journal of Obesity 12, 1527.Google ScholarPubMed
Lieber, C. S. (1988). Biochemical and molecular basis of alcohol-induced injury to liver and other tissues. New England Journal of Medicine 319, 16391650.Google ScholarPubMed
Lissner, L., Levitsky, D. A., Strupp, B. J., Kalkwarf, H. J. & Roe, D. A. (1987). Dietary fat and the regulation of energy intake in human subjects. American Journal of Clinical Nutrition 46, 886892.CrossRefGoogle ScholarPubMed
Masoro, E. J. (1962). Biochemical mechanisms related to the homeostatic regulation of lipogenesis in animals. Journal of Lipid Research 3, 149164.Google Scholar
Munro, H. N. (1964). General aspects of regulation of protein metabolism by diet and by hormones. In Mammalian Protein Metabolism, pp. 381481 [Munro, H. N. and Allison, J. B., editors]. New York: Academic Press.CrossRefGoogle Scholar
Radziuk, J., McDonald, T. J., Rubenstein, D. & Dupre, J. (1978). Initial splanchnic extraction of ingested glucose in normal man. Metabolism 27, 657669.CrossRefGoogle ScholarPubMed
Randle, P. J., Garland, P. B., Hales, C. N. & Newsholme, E. A. (1963). The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet i, 785789.CrossRefGoogle Scholar
Robinson, S. M., Jaccard, C., Persaud, C., Jackson, A. A., Jéquier, E. & Schutz, Y. (1990). Protein turnover and thermogenesis in response to high-protein and high-carbohydrate feeding in men. American Journal of Clinical Nutrition 52, 7280.CrossRefGoogle ScholarPubMed
Rousselle, J., Bückert, A., Pahud, P., Jéquier, E. & Felber, J. (1982). Relationship between glucose oxidation and glucose tolerance in man. Metabolism 31, 866870.CrossRefGoogle ScholarPubMed
Schutz, Y., Flatt, J. P. & Jéquier, E. (1989). Failure of dietary fat intake to promote fat oxidation: a factor favoring the development of obesity. American Journal of Clinical Nutrition 50, 307314.CrossRefGoogle ScholarPubMed
Schutz, Y., Tremblay, A., Weinsier, R. L. & Nelson, K. M. (1992). Role of fat oxidation in the long-term stabilization of body weight in obese women. American Journal of Clinical Nutrition 55, 670784.CrossRefGoogle ScholarPubMed
Scrimshaw, N. S., Hussein, M. A., Murray, E., Rand, W. M. & Young, V. R. (1972). Protein requirements of man: variation in obligatory urinary and fecal nitrogen losses in young men. Journal of Nutrition 102, 15951604.CrossRefGoogle Scholar
Suter, P. M., Jéquier, E. & Schutz, Y. (1994). Effect of ethanol on energy expenditure. American Journal of Physiology 266, R1204R1212.Google ScholarPubMed
Suter, P. M., Schutz, Y. & Jéquier, E. (1992). The effect of ethanol on fat storage in healthy subjects. New England Journal of Medicine 326, 983987.CrossRefGoogle ScholarPubMed
Swinburn, B. A., Nyomba, B. L., Saad, M. F., Zurlo, F., Raz, I., Knowler, W. C., Lillioja, S., Bogardus, C. & Ravussin, E. (1991). Insulin resistance associated with lower rates of weight gain in Pima Indians. Journal of Clinical Investigation 88, 168173.CrossRefGoogle ScholarPubMed
Tappy, L., Acheson, K., Normand, S., Schneeberger, D., Thélin, A., Pachiaudi, C., Riou, J. P. & Jéquier, E. (1992). Effects of infused amino acids on glucose production and utilization in healthy human subjects. American Journal of Physiology 262, E826E833.Google ScholarPubMed
Tappy, L., Felber, J. P. & Jéquier, E. (1991). Energy and substrate metabolism in obesity and postobese state. Diabetes Care 14, 11801188.CrossRefGoogle ScholarPubMed
Thiébaud, D., Jacot, E., DeFronzo, R., Maeder, E., Jéquier, E. & Felber, J. (1982). The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. Diabetes 31, 957963.CrossRefGoogle ScholarPubMed
Tremlay, A., Plourde, G., Despres, J. P. & Bouchard, C. (1989). Impact of dietary fat content and fat oxidation on energy intake in humans. American Journal of Clinical Nutrition 49, 799805.CrossRefGoogle Scholar
Tucker, L. A. & Kano, M. J. (1992). Dietary fat and body fat: a multivariate study of 205 adult females. American Journal of Clinical Nutrition 56, 616622.CrossRefGoogle ScholarPubMed
Vaag, A., Skött, P., Damsbo, P., Gall, M. A., Richter, E. A. & Beck-Nielsen, H. (1991). Effect of the antilipolytic nicotinic acid analogue acipimox on whole-body and skeletal muscle metabolism in patients with non-insulin-dependent diabetes mellitus. Journal of Clinical Investigation 88, 12821290.CrossRefGoogle ScholarPubMed
Zelewski, M. & Swierczynki, J. (1990). Comparative studies on lipogenic enzyme activities in the liver of human and some animal species. Comparative Biochemistry and Physiology 95, 469472.Google ScholarPubMed
Zurlo, F., Lillioja, S., Esposito-Del Puente, A., Nyomba, B. L., Raz, I., Saad, M. F., Swinburn, B. A., Knowler, W. C., Bogardus, C. & Ravussin, E. (1990). Low ratio of fat to carbohydrate oxidation as predictor of weight gain: study of 24-h RQ. American Journal of Physiology 259, E650E657.Google ScholarPubMed
You have Access
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nutrient effects: post-absorptive interactions
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Nutrient effects: post-absorptive interactions
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Nutrient effects: post-absorptive interactions
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *