Skip to main content Accessibility help
×
Home

Primary structure of arabinoxylans of ispaghula husk and wheat bran.

  • Sandra Edwards (a1), Martin F. Chaplin (a1), Anne D. Blackwood (a1) and Peter W. Dettmar (a2)

Abstract

he primary structures of ispaghula husk and wheat bran were investigated in order to determine how and why these fibres are among the most beneficial dietary fibres. To this end, the polysaccharide preparations have been subjected to enzymic hydrolysis and methylation analysis. The results have shown ispaghula husk and wheat bran to be very-highly-branched arabinoxylans consisting of linear Β-D-→l(4)-linked xylopyranose →Xylp) backbones to which a-L-arabinofuranose →Araf) units are attached as side residues via α-→1(3) and a-→l(2) linkages. Other substituents identified as present in wheat bran include Β-D-glucuronic acid attached via the C→O)-2 position, and arabinose oligomers, consisting of two or more arabinofuranosyl residues linked via 1–2, 1–3, and 1–4 linkages. Ispaghula-husk arabinoxylan is more complex having additional side residues which include a-D-glucuronopyranose →GalAp)-→l→2(-linked-α-L-rhamnopyranose-(1→4)-β-D-Xylp, α-D-GalA/>-→l→3(-linked-a-L-Araf-→1)4(-p-D-Xylp, and <x-L-Araf-→1→3(-linked-p-D-Xylp-→1→4(-β-D-Xylp. The beneficial effects of increased faecal bulk and water-holding capacity are undoubtedly related to the structures of the arabinoxylans, with differences in their efficacy to treat various functional bowel disorders due to their specific structural features

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Primary structure of arabinoxylans of ispaghula husk and wheat bran.
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Primary structure of arabinoxylans of ispaghula husk and wheat bran.
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Primary structure of arabinoxylans of ispaghula husk and wheat bran.
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Martin Chaplin, fax +44 20 7815 7999, martin.chaplin@sbu.ac.uk

References

Hide All
Bengtsson, S & Aman, P (1990) Isolation and chemical characterisation of water soluble arabinoxylans in rye grain. Carbohydrate Polymers 12, 267277.
Bergmans, MEF, Beldman, G, Gruppen, H & Voragen, AGJ (1996) Optimisation of the selective extraction of (glucurono) arabinoxylans from wheat bran: Use of barium and calcium hydroxide solution at elevated temperatures. Journal of Cereal Science 23, 233245.
Dubois, M, Gilles, KA, Hamilton, JK, Rebers, PA & Smith, F (1956) Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28, 350356.
Fincher, GB & Stone, BA (1986) Cell walls and their components in cereal grain technology. In Advances in Cereal Science and Technology. pp.207295, [Pomeranz, Y, editors] St Paul, MN: American Association of Cereal Chemists Inc.
Gruppen, H, Kormelink, FJM & Voragen, AGJ (1993) Water un-extractable cellwall material from wheat flour. 3. A structural model for arabinoxylans. Journal of Cereal Science 18, 111128.
Hakomori, S-I (1964) A rapid permethylation of glycolipids and polysaccharides catalyses by methylsulfinyl carbanion in dimethyl sulfoxide. Journal of Biochemistry (Tokyo) 55, 205208.
Hoffmann, RA, Kamerling, JP & Vliegenthart, JFG (1992) Structural features of a water-soluble arabinoxylan from the endosperm of wheat. Carbohydrate Research 226, 303311.
Izydorczyk, MS & Biliaderis, CG (1995) Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydrate Polymers 28, 3348.
Kennedy, JF, Sandhu, JS & Southgate, DAT (1979) Structural data for the carbohydrate of ispaghula husk ex Plantago ovata Forsk. Carbohydrate Research 75, 265274.
Lowry, OH, Rosebrough, NJ, Farr, AL & Randall, RJ (1951) Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265275.
Shiiba, K, Yamada, H, Kara, H, Okada, K & Nagao, S (1993) Purification and characterisation of two arabinoxylans from wheat bran. Cereal Chemistry 70, 209214.
Somogyi, MJ (1952) Determination of blood sugar. Journal of Biological Chemistry 195, 1923.
Stevens, BJH & Selvendran, RR (1988) Changes in composition and structure of wheat bran resulting from the action of human fecal bacteria in vitro. Carbohydrate Research 183, 311319.
Sweet, DP, Shapiro, RH & Albersheim, P (1975) Quantitative analysis by various GLC response factor theories for partially methylated and partially ethylated alditol acetates. Carbohydrate Research 40, 217255.
Taylor, RA & Conrad, HE (1972) Stoichiometric depolymerisation of polyuronides and glucosaminoglycuronans to monosaccharides following reduction of their carbodiimide activated carboxyl group. Biochemistry 11, 13831388.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed