Skip to main content Accessibility help
×
Home

Transcriptional regulation of pyruvate dehydrogenase kinase 4 in skeletal muscle during and after exercise

  • Henriette Pilegaard (a1) and P. Darrell Neufer (a2)

Abstract

The pyruvate dehydrogenase complex (PDC) has a key position in skeletal muscle metabolism as it represents the entry of carbohydrate-derived fuel into the mitochondria for oxidation. PDC is regulated by a phosphorylation–dephosphorylation cycle, in which the pyruvate dehydrogenase kinase (PDK) phosphorylates and inactivates the complex. PDK exists in four isoforms, of which the PDK4 isoform is predominantly expressed in skeletal and heart muscle. PDK4 transcription and PDK4 mRNA are markedly increased in human skeletal muscle during prolonged exercise and after both short-term high-intensity and prolonged low-intensity exercise. The exercise-induced transcriptional response of PDK4 is enhanced when muscle glycogen is lowered before the exercise, and intake of a low-carbohydrate high-fat diet during recovery from exercise results in increased transcription and mRNA content of PDK4 when compared with intake of a high-carbohydrate diet. The activity of pyruvate dehydrogenase (PDH) is increased during the first 2 h of low-intensity exercise, followed by a decrease towards resting levels, which is in line with the possibility that the increased PDK4 expressed influences the PDH activity already during prolonged exercise. PDK4 expression is also increased in response to fasting and a high-fat diet. Thus, increased PDK4 expression when carbohydrate availability is low seems to contribute to the sparing of carbohydrates by preventing carbohydrate oxidation. The impact of substrate availability on PDK4 expression during recovery from exercise also underlines the high metabolic priority given to replenishing muscle glycogen stores and re-establishing intracellular homeostasis after exercise.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Transcriptional regulation of pyruvate dehydrogenase kinase 4 in skeletal muscle during and after exercise
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Transcriptional regulation of pyruvate dehydrogenase kinase 4 in skeletal muscle during and after exercise
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Transcriptional regulation of pyruvate dehydrogenase kinase 4 in skeletal muscle during and after exercise
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Dr Henriette Pilegaard Fax: +45 35 32 1567, Email: hpilegaard@aki.ku.dk

References

Hide All
Bowker-Kinley, MM, Davis, WI, Wu, P, Harris, RA & Popov, KM (1998) Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochemical Journal 329, 191196.
Brozinick, JT Jr, Patel, VK & Dohm, GL (1988) Effects of fasting and training on pyruvate dehydrogenase activation during exercise. International Journal of Biochemistry 20, 297301.
Dohm, GL, Patel, VK & Kasperek, GJ (1986) Regulation of muscle pyruvate metabolism during exercise. Biochemical Medicine and Metabolic Biology 35, 260266.
Furuyama, T, Kitayama, K, Yamashita, H & Mori, N (2003) Forkhead transcription factor FOXO1 (FKHR)-dependent induction of PDK4 gene expression in skeletal muscle during energy deprivation. Biochemical Journal 375, 365371.
Hagg, SA, Taylor, SI & Ruderman, NB (1976) Glucose metabolism in perfused skeletal muscle. Biochemical Journal 158, 203210.
Harris, RA, Huang, B & Wu, P (2001) Control of pyruvate dehydrogenase kinase gene expression. Advances in Enzyme Regulation 41, 269288.
Hennig, G, Löffler, G & Wieland, OH (1975) Active and inactive forms of pyruvate dehydrogenase in skeletal muscle as related to the metabolic and functional state of the muscle cell. FEBS Letters 59, 142145.
Hildebrandt, AL & Neufer, PD (2000) Exercise attenuates the fasting-induced transcriptional activation of metabolic genes in skeletal muscle. American Journal of Physiology 278, E1078E1086.
Hildebrandt, AL, Pilegaard, H & Neufer, PD (2003) Differential transcriptional activation of select metabolic genes in response to variations in exercise intensity and duration. American Journal of Physiology 285, E1021E1027.
Holness, MJ, Bulmer, K, Gibbons, GF & Sugden, MC (2002) Upregulation of pyruvate dehydrogenase kinase isoform 4 (PDK4) protein expression in oxidative skeletal muscle does not require the obligatory participation of peroxisome-proliferator-activated receptor α (PPARα). Biochemical Journal 366, 839846.
Holness, MJ, Kraus, A, Harris, RA & Sugden, MC (2000) Targeted upregulation of pyruvate dehydrogenase kinase (PDK)-4 in slow-twitch skeletal muscle underlies the stable modification of the regulatory characteristics of PDK induced by high-fat feeding. Diabetes 49, 775781.
Mourtzakis, M, Saltin, B, Graham, T & Pilegaard, H (2002) Pyruvate dehydrogenase active form (PDHa) and carbohydrate (CHO) utilization during prolonged exercise. FASEB Journal 16, A780.
Muoio, DM, MacLean, PS, Lang, DB, Li, JA, Way, JM, Winegar, DA, Corton, JC, Dohm, GL & Kraus, WE (2002) Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) α knock-out mice. Journal of Biological Chemistry 277, 2608926097.
Nordsborg, N, Bangsbo, J & Pilegaard, H (2003) Effect of high-intensity training on exercise-induced gene expression specific to ion homeostasis and metabolism. Journal of Applied Physiology 95, 12011206.
Patel, MS & Korotchkina, LG (2001) Regulation of mammalian pyruvate dehydrogenase complex by phosphorylation: complexity of multiple phosphorylation sites and kinases. Experimental and Molecular Medicine 33, 191197.
Perham, RN (2000) Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions. Annual Review of Biochemistry 69, 9611004.
Peters, SJ, Harris, RA, Heigenhauser, GJ & Spriet, LL (2001 a) Muscle fiber type comparison of PDH kinase activity and isoform expression in fed and fasted rats. American Journal of Physiology 280, R661R668.
Peters, SJ, Harris, RA, Wu, P, Pehleman, TL, Heigenhauser, GJ & Spriet, LL (2001 b) Human skeletal muscle PDH kinase activity and isoform expression during a 3-day high-fat/low-carbohydrate diet. American Journal of Physiology 281, E1151E1158.
Pilegaard, H, Helge, JW, Saltin, B & Neufer, PD (2001) Effect of substrate availability on the transcriptional regulation of metabolic genes in human skeletal muscle during recovery from exercise. FASEB Journal 15, A417.
Pilegaard, H, Keller, C, Steensberg, A, Helge, JW, Klarlund-Petersen, B, Saltin, B & Neufer, PD (2002) Importance of glycogen content for the exercise-induced gene expression in human skeletal muscle. Journal of Physiology (London) 541, 261271.
Pilegaard, H, Ordway, GA, Saltin, B & Neufer, PD (2000) Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. American Journal of Physiology 279, E806E814.
Pilegaard, H, Saltin, B & Neufer, PD (2003 a) Short-term fasting and re-feeding on transcriptional regulation of metabolic genes in human skeletal muscle. Diabetes 52, 657662.
Pilegaard, H, Van Hall, G, Sacchetti, M, Saltin, B & Neufer, PD (2003 b) Effect of free fatty acids on transcriptional regulation of metabolic genes during rest and exercise in human skeletal muscle. FASEB Journal 17, A433Abstr.
Putman, CT, Spriet, LL, Hultman, E, Lindinger, MI & Lands, LC (1993) Pyruvate dehydrogenase activity and acetyl group accumulation during exercise after different diets. American Journal of Physiology 265, E752E760.
Reed, LJ (2001) A trail of research from lipoic acid to α-keto acid dehydrogenase complexes. Journal of Biological Chemistry 276, 3832938336.
Roche, TE, Baker, JC, Yan, X, Hiromasa, Y, Gong, X, Peng, T, Dong, J, Turkan, A & Kasten, SA (2001) Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Progress in Nucleic Acid Research 70, 3375.
Sugden, MC & Holness, MJ (2003) Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDK's. American Journal of Physiology 284, E855E862.
Sugden, MC, Kraus, A, Harris, RA & Holness, MJ (2000) Fibre-type specific modification of the activity and regulation of skeletal muscle pyruvate dehydrogenase kinase (PDK) by prolonged starvation and refeeding is associated with targeted regulation of PDK isoenzyme 4 expression. Biochemical Journal 346, 651657.
Ward, GR, Sutton, JR, Jones, NL & Toews, CJ (1982) Activation by exercise of human skeletal muscle pyruvate dehydrogenase in vivo. Clinical Science 63, 8792.
Watt, MJ, Heigenhauser, GJ, Dyck, DJ & Spriet, LL (2002) Intramuscular triacylglycerol, glycogen and acetyl group metabolism during 4 h of moderate exercise in man. Journal of Physiology (London) 541, 969978.
Wojtaszewski, JFP, Mourtzakis, M, Hillig, T, Saltin, B & Pilegaard, H (2002) Dissociation of AMPK activity and ACCβ phosphorylation in human muscle during prolonged exercise. Biochemical and Biophysical Research Communications 298, 309316.
Wu, P, Inskeep, K, Bowker-Kinley, MM, Popov, KM & Harris, RA (1999) Mechanism responsible for inactivation of skeletal muscle pyruvate dehydrogenase complex in starvation and diabetes. Diabetes 48, 15931599.
Wu, P, Peters, JM & Harris, RA (2001) Adaptive increase in pyruvate dehydrogenase kinase 4 during starvation is mediated by peroxisome proliferator-activated receptor α. Biochemical and Biophysical Research Communications 287, 391396.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed