Skip to main content Accessibility help

Dynamics of a susceptible–infected–susceptible epidemic reaction–diffusion model

  • Keng Deng (a1) and Yixiang Wu (a1)


We study a susceptible–infected–susceptible reaction–diffusion model with spatially heterogeneous disease transmission and recovery rates. A basic reproduction number is defined for the model. We first prove that there exists a unique endemic equilibrium if . We then consider the global attractivity of the disease-free equilibrium and the endemic equilibrium for two cases. If the disease transmission and recovery rates are constants or the diffusion rate of the susceptible individuals is equal to the diffusion rate of the infected individuals, we show that the disease-free equilibrium is globally attractive if , while the endemic equilibrium is globally attractive if .



Hide All

* Present address: Department of Applied Mathematics, Western University, London, Ontario N6A 3K7, Canada ().


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed