1Avellaneda, M.. Iterated homogenization, differential effective medium theory and applications. Comm. Pure Appl. Math. 40 (1987), 527–554.
2Avellaneda, M.. Optimal bounds and microgeometries for elastic two-phase composites..S1AM J. Appl. Math. 47 (1987), 1216–1228.
3Ball, J. M.. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1977), 337–403.
4Calderon, A. P.. Commutators of singular integral operators Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1092–1099.
5Coifman, R. and Meyer, Y.. Au dela des op6rateurs pseudo-diffe'rentiels Astirisque 57 (1978) 1–185.
6David, G. and Journé, J. L.. Une caracté;risation des opérateurs intègraux singuliers bornésur L2(RN). C. R. Acad. Sci. Paris, Sir. I. Math.. 296 (1983), 761–764.
7DiPerna, R. J.. Convergence of approximate solutions to conservation law. Arch. Rational Mech. Anal. 82 (1983), 27–70.
8DiPerna, R. J.. Convergence of the viscosity method for isentropic gas dynamics. Comm. Math. Phys. 91 (1983), 1–30.
9DiPerna, R. J.. Oscillations and concentrations in solutions to the equations of mechanics. In Directions in Partial Differential Equations, eds. Crandall, M. G., Rabinowitz, P. H. and Turner, R. E. L., pp. 43–53 (New York: Academic Press, 1987).
10DiPerna, R. J. and Lions, P. L.. On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math., 130 (1989), 321–366.
11DiPerna, R. J. and Lions, P. L.. Global weak solutions of Vlasov Maxwell systems. Comm. Pure Appl. Math., 42 (1989), 729–757.
12DiPerna, R. J. and Majda, A. J.. Oscillations and concentration in weak solutions of the incompressible fluid equations. Comm. Math. Phys. 108 (1987) 667–689.
13DiPerna, R. J. and Majda, A. J.. Concentration in regularizations for 2-D incompressible flow. Comm. Pure Appl. Math. 40 (1987), 301–345.
14Fefferman, C.. Recent progress in classical Fourier analysis. Proc. I.CM. Vancouver, 1974, pp. 95–118.
15Francfort, G. and Murat, F.. Homogenization and optimal bounds in linear elasticity. Arch. Rational Mech. Anal. 94d (1986), 307–334.
16Gerard, P.. Compacite’ par compensation et regularity 2-microlocale. Séminaire Equations mix Dirivees Partielles 1988–1989 (Ecole Polytechnique, Palaiseau, exp. VI).
17Höormander., L..The Analysis of Linear Partial Differenital Operators I-IV (Berlin: Springer, 1983–1985).
18Kohn, R. V. and Milton, G. W.. On bounding the effective conductivity of anisotropic composites. In Homogenization and Effective Moduli of Materials and Media, eds. Ericksen, J. L., Kinderlehrer, D., Kohn, R. V. and Lions, J. L., pp. 97–125. IMA Volumes in Mathematics and its Applications 1, (Berlin: Springer, 1986).
19Landau, L. D. and Lifschitz, E. M.. Electrodynamics of Continuous Media, (Oxford: Pergamon Press, 1984).
20Lions, P. L.. The concentration-compactness principle in the calculus of variations: the locally compact case, part 1 and 2. Ann. Inst. H. Poincari Anal. Non Linéaire (1984), 109–145; 223–283.
21Lions, P. L.. The concentration-compactness principle in the calculus of variations: the limit case, part 1 and 2. Rev. Mat. Iberoamericana, 1 (1985) (1), 145–201; (2), 45–121.
22Milton, G. W.. Modelling the properties of composites by laminates. In Homogenization and Effective Moduli of Materials and Media, eds. Ericksen, J. L., Kinderlehrer, D., Kohn, R. V. and Lions, J. L., pp. 150–174. IMA Volumes in Mathematics and its Applications 1 (Berlin: Springer, 1986).
23Murat, F.. Compacite par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4). 5 (1978), 489–507.
24Murat, F.. H-convergence (Seminaire d'analyse fonctionnelle et numerique de:I'Université d' Alger, 1977–1978.
25Murat, F. and Tartar, L.. In preparation.
26Tartar, L.. Homogeneisation en hydrodynamique In Singular Perturbations and Boundary Layer Theory, Lyon 1976. Lecture Notes in Mathematics 594 pp. 474–481 (Berlin: Springer, 1977).
27Tartar, L.. Cours Peccot, College de France, Paris, 1977. Unpublished. Some material used in [24].
28Tartar, L.. Estimations de coefficients homogénésés. In Computing Methods in Applied Sciences and Engineering, I. Lecture Notes in Mathematics 704 pp. 364–373 (Berlin: Springer, 1979).
29Tartar, L.. Compensated compactness and applications to partial differential equations. In Nonlinear Analysis and Mechanics, Heriot-Watt Symposium IV, ed. Knops, R. J, Research Notes in Mathematics 39 pp. 136–212. (London: Pitman 1979).
30Tartar, L.. The compensated compactness method applied to systems of conservation laws. In Systems of Nonlinear Partial Differential Equations ed. Ball, J. M., NATO ASI Series C 111 pp. 263–285. (New York: Reidel, 1983).
31Tartar, L.. Estimations fines de coefficients homogónéisés. In Ennio de Giorgi Colloquium, ed. Krée, P., Research Notes in Mathematics 125, pp. 168–187. (London: Pitman, 1985).
32Tartar, L. Oscillations in nonlinear partial differential equations: compensated compactness and homogenization. In Nonlinear Systems of Partial Differential Equations in Applied Mathematics Part 1, pp. 243–266. Lectures in Applied Mathematics 23, (Providence, R.I.: Americal Mathematical Society, 1986).
33Tartar, L.. Remarks on homogenization. In Homogenization and Effective Moduli of Materials and Media, eds. Ericksen, J. L.Kinderlehrez, D., Kohn, R. V., and Lions, J. L., IMA Volumes in Mathematics and its Applications 1, pp. 228–246. (Berlin: Springer-Verlag, 1986).
34Young, L. C.. Lectures on the Calculus of Variation and Optimal Control Theory. (Philadelphia: W. B. Saunders, 1969).