Skip to main content Accessibility help

Uniform moment propagation for the Becker--Döring equations

  • José A. Cãnizo (a1), Amit Einav (a2) and Bertrand Lods (a3)


We show uniform-in-time propagation of algebraic and stretched exponential moments for the Becker--Döring equations. Our proof is based upon a suitable use of the maximum principle together with known rates of convergence to equilibrium.



Hide All
1Alonso, R., Cañizo, J. A., Gamba, I. and Mouhot, C.. A new approach to the creation and propagation of exponential moments in the Boltzmann equation. Comm. Partial Differ. Equ. 38 (2013), 155169.
2Amann, H.. Ordinary differential equations: an introduction to nonlinear analysis (Volume 13 of De Gruyter studies in Mathematics (Berlin: de Gruyter, 1990).
3Ball, J. M. and Carr, J.. Asymptotic behaviour of solutions to the Becker-Döring equations for arbitrary initial data. Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), 109116.
4Ball, J. M., Carr, J. and Penrose, O.. The Becker-Döring cluster equations: Basic properties and asymptotic behaviour of solutions. Comm. Math. Phys. 104 (1986), 657692.
5Becker, R. and Döring, W.. Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Ann. Phys. 416 (1935), 719752.
6Bobylev, A. V.. Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems. J. Statist. Phys. 88 (1996), 11831214.
7Cañizo, J. A.. Asymptotic behavior of the generalized Becker-Döring equations for general initial data. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461 (2005), 37313745.
8Cañizo, J. A.. Convergence to equilibrium for the discrete Coagulation-Fragmentation equations with detailed balance. J. Statist. Phys. 129 (2007), 126.
9Cañizo, J. A. and Lods, B.. Exponential convergence to equilibrium for subcritical solutions of the Becker-Döring equations. J. Differ. Equ. 255 (2013), 905950.
10Cañizo, J. A., Einav, A. and Lods, B.. Trend to equilibrium for the Becker-Döring equations: An analogue of Cercignani's conjecture. Anal. PDE 10-7 (2017), 16631708.
11Jabin, P.-E. and Niethammer, B.. On the rate of convergence to equilibrium in the Becker-Döring equations. J. Differ. Equ. 191 (2003), 518543.
12Laurençot, P. and Mischler, S.. From the Becker-Döring to the Lifshitz-Slyozov-Wagner equations. J. Statist. Phys. 106 (2002), 957991.
13Murray, R. W. and Pego, R. L.. Algebraic decay to equilibrium for the Becker–Döring equations. SIAM J. Math. Anal. 48 (2016a), 28192842.
14Murray, R. W. and Pego, R. L.. Cutoff estimates for the Becker-Döring equations. Preprint (2016b).
15Niethammer, B.. On the evolution of large clusters in the Becker-Döring model. J. Nonlinear Sci. 13 (2008), 115122.
16Penrose, O.. Metastable states for the Becker-Döring cluster equations. Comm. Math. Phys. 124 (1989), 515541.
17Penrose, O.. The Becker-Döring equations at large times and their connection with the LSW theory of coarsening. J. Statist. Phys. 89 (1997), 305320.
18Schlichting, A.. Macroscopic limit of the Becker-Döring equation via gradient flows. Preprint (2016).
19Slemrod, M.. The Becker-Döring equations, In Modeling in applied sciences (ed. Bellomo, N. and Pulvirenti, M.,pp. 149171 (Boston: Birkhäuser, Springer, 2000).
20Velázquez, J. J. L.. The Becker-Döring equations and the Lifshitz-Slyozov theory of coarsening. J. Statist. Phys. 92 (1998), 195236.


MSC classification

Uniform moment propagation for the Becker--Döring equations

  • José A. Cãnizo (a1), Amit Einav (a2) and Bertrand Lods (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed