Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-t82dr Total loading time: 0.268 Render date: 2021-11-30T22:50:09.501Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Association between traumatic stress load, psychopathology, and cognition in the Philadelphia Neurodevelopmental Cohort

Published online by Cambridge University Press:  15 April 2018

Ran Barzilay*
Affiliation:
Department of Child and Adolescent Psychiatry and Behavioral Sciences, Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine; CHOP, Philadelphia, PA, USA Department of Psychiatry, Neuropsychiatry Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
Monica E. Calkins
Affiliation:
Department of Child and Adolescent Psychiatry and Behavioral Sciences, Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine; CHOP, Philadelphia, PA, USA
Tyler M. Moore
Affiliation:
Department of Child and Adolescent Psychiatry and Behavioral Sciences, Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine; CHOP, Philadelphia, PA, USA
Daniel H. Wolf
Affiliation:
Department of Child and Adolescent Psychiatry and Behavioral Sciences, Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine; CHOP, Philadelphia, PA, USA
Theodore D. Satterthwaite
Affiliation:
Department of Child and Adolescent Psychiatry and Behavioral Sciences, Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine; CHOP, Philadelphia, PA, USA
J. Cobb Scott
Affiliation:
Department of Child and Adolescent Psychiatry and Behavioral Sciences, Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine; CHOP, Philadelphia, PA, USA
Jason D. Jones
Affiliation:
Department of Psychiatry, Neuropsychiatry Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
Tami D. Benton
Affiliation:
Department of Psychiatry, Neuropsychiatry Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
Ruben C. Gur
Affiliation:
Department of Child and Adolescent Psychiatry and Behavioral Sciences, Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine; CHOP, Philadelphia, PA, USA Department of Psychiatry, Neuropsychiatry Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
Raquel E. Gur
Affiliation:
Department of Child and Adolescent Psychiatry and Behavioral Sciences, Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine; CHOP, Philadelphia, PA, USA Department of Psychiatry, Neuropsychiatry Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
*
Author for correspondence: Ran Barzilay, E-mail: barzilayr@chop.email.edu

Abstract

Background

Traumatic stressors during childhood and adolescence are associated with psychopathology, mostly studied in the context of post-traumatic stress disorder (PTSD) and depression. We investigated broader associations of traumatic stress exposure with psychopathology and cognition in a youth community sample.

Methods

The Philadelphia Neurodevelopmental Cohort (N = 9498) is an investigation of clinical and neurobehavioral phenotypes in a diverse (56% Caucasian, 33% African American, 11% other) US youth community population (aged 8–21). Participants were ascertained through children's hospital pediatric (not psychiatric) healthcare network in 2009–2011. Structured psychiatric evaluation included screening for lifetime exposure to traumatic stressors, and a neurocognitive battery was administered.

Results

Exposure rate to traumatic stressful events was high (none, N = 5204; one, N = 2182; two, N = 1092; three or more, N = 830). Higher stress load was associated with increased psychopathology across all clinical domains evaluated: mood/anxiety (standardized β = .378); psychosis spectrum (β = .360); externalizing behaviors (β = .311); and fear (β = .256) (controlling for covariates, all p < 0.001). Associations remained significant controlling for lifetime PTSD and depression. Exposure to high-stress load was robustly associated with suicidal ideation and cannabis use (odds ratio compared with non-exposed 5.3 and 3.2, respectively, both p < 0.001). Among youths who experienced traumatic stress (N = 4104), history of assaultive trauma was associated with greater psychopathology and, in males, vulnerability to psychosis and externalizing symptoms. Stress load was negatively associated with performance on executive functioning, complex reasoning, and social cognition.

Conclusions

Traumatic stress exposure in community non-psychiatric help-seeking youth is substantial, and is associated with more severe psychopathology and neurocognitive deficits across domains, beyond PTSD and depression.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asselmann, E, et al. (2018) Sociodemographic, clinical, and functional long-term outcomes in adolescents and young adults with mental disorders. Acta Psychiatrica Scandinavica 137, 617.CrossRefGoogle Scholar
Baldwin, JR, et al. (2018) Childhood victimization and inflammation in young adulthood: a genetically sensitive cohort study. Brain, Behavior, and Immunity 67, 211217.CrossRefGoogle Scholar
Bale, TL and Epperson, CN (2015) Sex differences and stress across the lifespan. Nature Neuroscience 18, 14131420.CrossRefGoogle ScholarPubMed
Barnhofer, T, et al. (2014) A comparison of vulnerability factors in patients with persistent and remitting lifetime symptom course of depression. Journal of Affective Disorders 152–154, 155161.CrossRefGoogle Scholar
Baumeister, D, et al. (2016) Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Molecular Psychiatry 21, 642649.CrossRefGoogle ScholarPubMed
Berens, AE, Jensen, SKG and Nelson, CA (2017) Biological embedding of childhood adversity: from physiological mechanisms to clinical implications. BMC Medicine 15, 135.CrossRefGoogle ScholarPubMed
Busso, DS, et al. (2017) Child abuse, neural structure, and adolescent psychopathology: a longitudinal study. Journal of the American Academy of Child and Adolescent Psychiatry 56, 321328.e1.CrossRefGoogle ScholarPubMed
Calkins, ME, et al. (2015) The Philadelphia Neurodevelopmental Cohort: constructing a deep phenotyping collaborative. Journal of Child Psychology and Psychiatry 56, 13561369.CrossRefGoogle ScholarPubMed
Calkins, ME, et al. (2014) The psychosis spectrum in a young U.S. Community sample: findings from the Philadelphia Neurodevelopmental Cohort. World Psychiatry 13, 296305.CrossRefGoogle Scholar
Carliner, H, et al. (2017) Trauma exposure and externalizing disorders in adolescents: results from the national comorbidity survey adolescent supplement. Journal of the American Academy of Child and Adolescent Psychiatry 56, 755764.e3.CrossRefGoogle Scholar
Cort, NA, et al. (2012) Predictors of treatment outcomes among depressed women with childhood sexual abuse histories. Depression and Anxiety 29, 479486.CrossRefGoogle ScholarPubMed
Cowell, RA, et al. (2015) Childhood maltreatment and its effect on neurocognitive functioning: timing and chronicity matter. Development and Psychopathology 27, 521533.CrossRefGoogle Scholar
Danese, A, et al. (2017) The origins of cognitive deficits in victimized children: implications for neuroscientists and clinicians. American Journal of Psychiatry 174, 349361.CrossRefGoogle Scholar
Derry, HM, et al. (2015) Sex differences in depression: does inflammation play a role? Current Psychiatry Reports 17, 78.CrossRefGoogle Scholar
Elton, A, et al. (2014) Childhood maltreatment is associated with a sex-dependent functional reorganization of a brain inhibitory control network. Human Brain Mapping 35, 16541667.CrossRefGoogle Scholar
Evans, GW, Li, D and Whipple, SS (2013) Cumulative risk and child development. Psychological Bulletin 139, 13421396.CrossRefGoogle ScholarPubMed
Everaerd, D, et al. (2012) Sex modulates the interactive effect of the serotonin transporter gene polymorphism and childhood adversity on hippocampal volume. Neuropsychopharmacology 37, 18481855.CrossRefGoogle ScholarPubMed
Everaerd, D, et al. (2016) Childhood abuse and deprivation are associated with distinct sex-dependent differences in brain morphology. Neuropsychopharmacology 41, 17161723.CrossRefGoogle ScholarPubMed
Gilman, SE, et al. (2015) Contributions of the social environment to first-onset and recurrent mania. Molecular Psychiatry 20, 329336.CrossRefGoogle ScholarPubMed
Gur, RC, et al. (2010) A cognitive neuroscience-based computerized battery for efficient measurement of individual differences: standardization and initial construct validation. Journal of Neuroscience Methods 187, 254262.CrossRefGoogle Scholar
Hardt, J and Rutter, M (2004) Validity of adult retrospective reports of adverse childhood experiences: review of the evidence. Journal of Child Psychology and Psychiatry, and Allied Disciplines 45, 260273.CrossRefGoogle Scholar
Heim, C and Binder, EB (2012) Current research trends in early life stress and depression: review of human studies on sensitive periods, gene–environment interactions, and epigenetics. Experimental Neurology 233, 102111.CrossRefGoogle Scholar
Karam, EG, et al. (2014) Cumulative traumas and risk threshold: 12-month PTSD in the world mental health (WMH) surveys. Depression and Anxiety 31, 130142.CrossRefGoogle Scholar
Kaufman, J, et al. (1997) Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity data. Journal of the American Academy of Child & Adolescent Psychiatry 36, 980988.CrossRefGoogle ScholarPubMed
Kelly, KM and Mezuk, B (2017) Predictors of remission from generalized anxiety disorder and major depressive disorder. Journal of Affective Disorders 208, 467474.CrossRefGoogle ScholarPubMed
Kessler, RC, et al. (2009) National comorbidity survey replication adolescent supplement (NCS-A): II. Overview and design. Journal of the American Academy of Child and Adolescent Psychiatry 48, 380385.CrossRefGoogle ScholarPubMed
Lee, FS, et al. (2014) Adolescent mental health–Opportunity and obligation. Science 346, 547549.CrossRefGoogle ScholarPubMed
Liu, H, et al. (2017) Association of DSM-IV posttraumatic stress disorder with traumatic experience type and history in the World Health Organization World Mental Health Surveys. JAMA Psychiatry 74, 270.CrossRefGoogle Scholar
Lowe, SR, et al. (2017) Pathways from assaultive violence to post-traumatic stress, depression, and generalized anxiety symptoms through stressful life events: longitudinal mediation models. Cambridge University Press. Psychological Medicine 47, 25562566.CrossRefGoogle Scholar
MacMillan, HL, et al. (2001) Childhood abuse and lifetime psychopathology in a community sample. American Journal of Psychiatry 158, 18781883.CrossRefGoogle Scholar
MacPherson, HA, et al. (2014) Predictors and moderators in the randomized trial of multifamily psychoeducational psychotherapy for childhood mood disorders. Journal of Clinical Child & Adolescent Psychology 43, 459472.CrossRefGoogle Scholar
Malarbi, S, et al. (2017) Neuropsychological functioning of childhood trauma and post-traumatic stress disorder: a meta-analysis. Neuroscience & Biobehavioral Reviews 72, 6886.CrossRefGoogle ScholarPubMed
Markon, KE, Chmielewski, M and Miller, CJ (2011) The reliability and validity of discrete and continuous measures of psychopathology: a quantitative review. Psychological Bulletin 137, 856879.CrossRefGoogle Scholar
McCutcheon, VV, et al. (2009) Accumulation of trauma over time and risk for depression in a twin sample. Psychological medicine 39, 431441.CrossRefGoogle Scholar
McEwen, BS (1998) Stress, adaptation, and disease: Allostasis and Allostatic Load. Blackwell Publishing Ltd Annals of the New York. Academy of Sciences 840, 3344.Google Scholar
McEwen, BS (2017) Allostasis and the epigenetics of brain and body health over the life course. JAMA Psychiatry 74, 551.CrossRefGoogle Scholar
McGrath, JJ, et al. (2017) The association between childhood adversities and subsequent first onset of psychotic experiences: a cross-national analysis of 23 998 respondents from 17 countries. Psychological Medicine 47, 12301245.CrossRefGoogle Scholar
McLaughlin, KA (2016) Future directions in childhood adversity and youth psychopathology. Journal of Clinical Child & Adolescent Psychology 45, 361382.CrossRefGoogle Scholar
McLaughlin, KA, et al. (2012) Childhood adversities and first onset of psychiatric disorders in a national sample of US adolescents. Archives of General Psychiatry 69, 1151.CrossRefGoogle Scholar
McLaughlin, KA, et al. (2017) Childhood adversities and post-traumatic stress disorder: evidence for stress sensitisation in the World Mental Health Surveys. The British Journal of Psychiatry 211, 280288.CrossRefGoogle ScholarPubMed
McLaughlin, KA and Sheridan, MA (2016) Beyond cumulative risk: a dimensional approach to childhood adversity. Current Directions in Psychological Science 25, 239245.CrossRefGoogle ScholarPubMed
Merikangas, K, et al. (2009) National comorbidity survey replication adolescent supplement (NCS-A): I. Background and measures. NIH Public Access. Journal of the American Academy of Child and Adolescent Psychiatry 48, 367369.CrossRefGoogle Scholar
Messman-Moore, TL and Bhuptani, PH (2017) A review of the long-term impact of child maltreatment on posttraumatic stress disorder and its comorbidities: an emotion dysregulation perspective. Clinical Psychology: Science and Practice 24, 154169.Google Scholar
Miller, ML and Brock, RL (2017) The effect of trauma on the severity of obsessive-compulsive spectrum symptoms: a meta-analysis. Journal of Anxiety Disorders 47, 2944.CrossRefGoogle Scholar
Miller, S, et al. (2015) Cognition-childhood maltreatment interactions in the prediction of antidepressant outcomes in major depressive disorder patients: results from the i-SPOT D trial. Depression and Anxiety 32, 594604.CrossRefGoogle Scholar
Moore, TM, et al. (2016) Characterizing social environment's association with neurocognition using census and crime data linked to the Philadelphia Neurodevelopmental Cohort. Psychological Medicine 46, 599610.CrossRefGoogle ScholarPubMed
Moore, TM, et al. (2015) Psychometric properties of the Penn computerized neurocognitive battery. Neuropsychology 29, 235246.CrossRefGoogle ScholarPubMed
Nemeroff, CB (2016) Paradise lost: the neurobiological and clinical consequences of child abuse and neglect. Neuron 89, 892909.CrossRefGoogle ScholarPubMed
Newbury, JB, et al. (2017) Measuring childhood maltreatment to predict early-adult psychopathology: comparison of prospective informant-reports and retrospective self-reports. Elsevier. Journal of Psychiatric Research 96, 5764.CrossRefGoogle Scholar
Pinheiro, J, et al. and RCT (2017) Linear and Nonlinear Mixed Effects Models. 3.1-128.Google Scholar
Ribeiro, WS, et al. (2013) The impact of epidemic violence on the prevalence of psychiatric disorders in Sao Paulo and Rio de Janeiro, Brazil. Ed. U Schmidt. PLoS ONE 8, e63545.CrossRefGoogle Scholar
Scott, JC, et al. (2015) A quantitative meta-analysis of neurocognitive functioning in posttraumatic stress disorder. Psychological Bulletin 141, 105140.CrossRefGoogle ScholarPubMed
Shaffer, D, et al. (1983) A children's global assessment scale (CGAS). Archives of General Psychiatry 40, 12281231.CrossRefGoogle Scholar
Shanmugan, S, et al. (2016) Common and dissociable mechanisms of executive system dysfunction across psychiatric disorders in youth. American Journal of Psychiatry 173, 517526.CrossRefGoogle ScholarPubMed
Shonkoff, JP, Boyce, WT and McEwen, BS (2009) Neuroscience, molecular biology, and the childhood roots of health disparities: building a new framework for health promotion and disease prevention. JAMA 301, 22522259.CrossRefGoogle ScholarPubMed
Suliman, S, et al. (2009) Cumulative effect of multiple trauma on symptoms of posttraumatic stress disorder, anxiety, and depression in adolescents. Comprehensive Psychiatry 50, 121127.CrossRefGoogle Scholar
Teicher, MH and Samson, JA (2013) Childhood maltreatment and psychopathology: a case for ecophenotypic variants as clinically and neurobiologically distinct subtypes. American Psychiatric AssociationArlington, VA. American Journal of Psychiatry 170, 11141133.CrossRefGoogle Scholar
Teicher, MH, Tomoda, A and Andersen, SL (2006) Neurobiological consequences of early stress and childhood maltreatment: are results from human and animal studies comparable? Annals of the New York Academy of Sciences 1071, 313323.CrossRefGoogle Scholar
Tyrka, AR, et al. (2013) The neurobiological correlates of childhood adversity and implications for treatment. Acta Psychiatrica Scandinavica 128, 434447.CrossRefGoogle Scholar
Walker, SP, et al. (2011) Inequality in early childhood: risk and protective factors for early child development. The Lancet 378, 13251338.CrossRefGoogle ScholarPubMed
Wiersma, JE, et al. (2009) The importance of childhood trauma and childhood life events for chronicity of depression in adults. Physicians Postgraduate Press, Inc. The Journal of Clinical Psychiatry 70, 983989.CrossRefGoogle Scholar
Wilkinson, G (2006) WRAT 4: wide range achievement test professional manual, 4th edn., Lutz, FL: Psychological Assessment Resources Inc.Google Scholar
Supplementary material: File

Barzilay et al. supplementary material

Barzilay et al. supplementary material 1

Download Barzilay et al. supplementary material(File)
File 798 KB
30
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Association between traumatic stress load, psychopathology, and cognition in the Philadelphia Neurodevelopmental Cohort
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Association between traumatic stress load, psychopathology, and cognition in the Philadelphia Neurodevelopmental Cohort
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Association between traumatic stress load, psychopathology, and cognition in the Philadelphia Neurodevelopmental Cohort
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *