Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-gblv7 Total loading time: 0.733 Render date: 2022-05-29T09:39:09.905Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Cardiovascular fitness in early adulthood and future suicidal behaviour in men followed for up to 42 years

Published online by Cambridge University Press:  06 June 2013

M. A. I. Åberg
Affiliation:
Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden Department of Primary Health Care, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
J. Nyberg
Affiliation:
Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
K. Torén
Affiliation:
Occupational and Environmental Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
A. Sörberg
Affiliation:
Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
H. G. Kuhn
Affiliation:
Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
M. Waern*
Affiliation:
Department of Psychiatry and Neurochemistry, Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
*
*Address for correspondence: M. Waern, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital, Blå Stråket 15, Gothenburg, Sweden. (Email: margda.waern@neuro.gu.se)

Abstract

Background

Cardiovascular fitness influences many aspects of brain function. However, the relationship between cardiovascular fitness and suicidal behaviour is unknown. Therefore, we aimed to determine whether cardiovascular fitness at age 18 years is associated with future risk of suicide attempt/death.

Method

We performed a population-based Swedish longitudinal cohort study of male conscripts with no previous or ongoing mental illness (n = 1 136 527). The conscription examination, which took place during 1968–2005, included the cycle ergonometric test and tests of cognitive performance. Future risk of suicide attempt/death over a 5- to 42-year follow-up period was calculated with Cox proportional hazards models controlling for several confounders including familial factors.

Results

At least one suicide attempt was recorded for 12 563 men. Death by suicide without a prior attempt was recorded in 4814 additional individuals. In fully adjusted models low cardiovascular fitness was associated with increased risk for future attempt/death by suicide [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.64–1.94]. The HR changed only marginally after exclusion of persons who received in-patient care for depression (HR 1.76, 95% CI 1.61–1.94). Poor performance on both the cardiovascular fitness and cognitive tests was associated with a fivefold increased risk of suicide attempt or suicide death (HR 5.46, 95% CI 4.78–6.24).

Conclusions

Lower cardiovascular fitness at age 18 years was, after adjustment for a number of potential confounders, associated with an increased risk of attempt/death by suicide in adulthood. It remains to be clarified whether interventions designed to improve fitness in teens can influence the risk of suicidal behaviour later in life.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åberg, MA, Pedersen, NL, Torén, K, Svartengren, M, Bäckstrand, B, Johnsson, T, Cooper-Kuhn, CM, Åberg, ND, Nilsson, M, Kuhn, HG (2009). Cardiovascular fitness is associated with cognition in young adulthood. Proceedings of the National Academy of Sciences USA 106, 2090620911.CrossRefGoogle ScholarPubMed
Åberg, MA, Waern, M, Nyberg, J, Pedersen, NL, Bergh, Y, Åberg, ND, Nilsson, M, Kuhn, HG, Torén, K (2012). Cardiovascular fitness in males at age 18 and risk of serious depression in adulthood: Swedish prospective population-based study. British Journal of Psychiatry 201, 352359.CrossRefGoogle ScholarPubMed
Andres, AR, Collings, S, Qin, P (2010). Sex-specific impact of socio-economic factors on suicide risk: a population-based case–control study in Denmark. European Journal of Public Health 20, 265270.CrossRefGoogle ScholarPubMed
Babiss, LA, Gangwisch, JE (2009). Sports participation as a protective factor against depression and suicidal ideation in adolescents as mediated by self-esteem and social support. Journal of Developmental and Behavioral Pediatrics 30, 376384.CrossRefGoogle ScholarPubMed
Batty, GD, Whitley, E, Deary, IJ, Gale, CR, Tynelius, P, Rasmussen, F (2010 a). Psychosis alters association between IQ and future risk of attempted suicide: cohort study of 1,109,475 Swedish men. British Medical Journal 340, c2506.CrossRefGoogle ScholarPubMed
Batty, GD, Whitley, E, Kivimaki, M, Tynelius, P, Rasmussen, F (2010 b). Body mass index and attempted suicide: cohort study of 1,133,019 Swedish men. American Journal of Epidemiology 172, 890899.CrossRefGoogle ScholarPubMed
Brown, DR, Blanton, CJ (2002). Physical activity, sports participation, and suicidal behavior among college students. Medicine and Science in Sports and Exercise 34, 10871096.CrossRefGoogle ScholarPubMed
Brown, J, Cooper-Kuhn, CM, Kempermann, G, van Praag, H, Winkler, J, Gage, FH, Kuhn, HG (2003). Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. European Journal of Neuroscience 17, 20422046.CrossRefGoogle Scholar
Bruffaerts, R, Demyttenaere, K, Borges, G, Haro, JM, Chiu, WT, Hwang, I, Karam, EG, Kessler, RC, Sampson, N, Alonso, J, Andrade, LH, Angermeyer, M, Benjet, C, Bromet, E, de Girolamo, G, de Graaf, R, Florescu, S, Gureje, O, Horiguchi, I, Hu, C, Kovess, V, Levinson, D, Posada-Villa, J, Sagar, R, Scott, K, Tsang, A, Vassilev, SM, Williams, DR, Nock, MK (2010). Childhood adversities as risk factors for onset and persistence of suicidal behaviour. British Journal of Psychiatry 197, 2027.CrossRefGoogle ScholarPubMed
Buckworth, J, Dishman, RK (2002). Exercise Psychology. Human Kinetics: Champaign, IL.Google Scholar
Carlstedt, B (2000). Cognitive abilities – aspects of structure, process and measurement. Thesis, University of Gothenburg.Google Scholar
Coryell, WH (2006). Clinical assessment of suicide risk in depressive disorder. CNS Spectrums 11, 455461.CrossRefGoogle ScholarPubMed
de Jonge, P, Roest, AM (2012). Depression and cardiovascular disease: the end of simple models. British Journal of Psychiatry 201, 337338.CrossRefGoogle ScholarPubMed
Dwivedi, Y (2009). Brain-derived neurotrophic factor: role in depression and suicide. Journal of Neuropsychiatric Disease and Treatment 5, 433449.CrossRefGoogle ScholarPubMed
Farmer, ME, Locke, BZ, Moscicki, EK, Dannenberg, AL, Larson, DB, Radloff, LS (1988). Physical activity and depressive symptoms: the NHANES I Epidemiologic Follow-up Study. American Journal of Epidemiology 128, 13401351.CrossRefGoogle ScholarPubMed
Gibbons, RD, Brown, CH, Hur, K, Davis, J, Mann, JJ (2012). Suicidal thoughts and behavior with antidepressant treatment: reanalysis of the randomized placebo-controlled studies of fluoxetine and venlafaxine. Archives of General Psychiatry 69, 580587.CrossRefGoogle ScholarPubMed
Gradus, JL, Qin, P, Lincoln, AK, Miller, M, Lawler, E, Sorensen, HT, Lash, TL (2010). Inflammatory bowel disease and completed suicide in Danish adults. Inflammatory Bowel Diseases 16, 21582161.CrossRefGoogle ScholarPubMed
Griffin, EW, Mullally, S, Foley, C, Warmington, SA, O'Mara, SM, Kelly, AM (2011). Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiology and Behavior 104, 934941.CrossRefGoogle ScholarPubMed
Gunnell, D, Magnusson, PK, Rasmussen, F (2005). Low intelligence test scores in 18 year old men and risk of suicide: cohort study. British Medical Journal 330, 167.CrossRefGoogle ScholarPubMed
Harvey, SB, Hotopf, M, Overland, S, Mykletun, A (2010). Physical activity and common mental disorders. British Journal of Psychiatry 197, 357364.CrossRefGoogle ScholarPubMed
Hunt, IM, Kapur, N, Robinson, J, Shaw, J, Flynn, S, Bailey, H, Meehan, J, Bickley, H, Parsons, R, Burns, J, Amos, T, Appleby, L (2006). Suicide within 12 months of mental health service contact in different age and diagnostic groups. National clinical survey. British Journal of Psychiatry 188, 135142.CrossRefGoogle ScholarPubMed
Jiang, GX, Rasmussen, F, Wasserman, D (1999). Short stature and poor psychological performance: risk factors for attempted suicide among Swedish male conscripts. Acta Psychiatrica Scandinavica 100, 433440.CrossRefGoogle ScholarPubMed
Kendal, WS, Kendal, WM (2012). Comparative risk factors for accidental and suicidal death in cancer patients. Crisis 33, 325334.CrossRefGoogle ScholarPubMed
Kinoshita, K, Kinoshita, Y, Shimodera, S, Nishida, A, Inoue, K, Watanabe, N, Oshima, N, Akechi, T, Sasaki, T, Inoue, S, Furukawa, TA, Okazaki, Y (2012). Not only body weight perception but also body mass index is relevant to suicidal ideation and self-harming behavior in Japanese adolescents. Journal of Nervous and Mental Disease 200, 305309.CrossRefGoogle ScholarPubMed
Kuramoto, SJ, Runeson, B, Stuart, EA, Lichtenstein, P, Wilcox, HC (2013). Time to hospitalization for suicide attempt by the timing of parental suicide during offspring early development. Archives of General Psychiatry 70, 149157.Google ScholarPubMed
Leon, AC, Friedman, RA, Sweeney, JA, Brown, RP, Mann, JJ (1990). Statistical issues in the identification of risk factors for suicidal behavior: the application of survival analysis. Psychiatry Research 31, 99108.CrossRefGoogle ScholarPubMed
Magnusson, PK, Rasmussen, F, Lawlor, DA, Tynelius, P, Gunnell, D (2006). Association of body mass index with suicide mortality: a prospective cohort study of more than one million men. American Journal of Epidemiology 163, 18.CrossRefGoogle ScholarPubMed
Niederkrotenthaler, T, Floderus, B, Alexanderson, K, Rasmussen, F, Mittendorfer-Rutz, E (2012). Exposure to parental mortality and markers of morbidity, and the risks of attempted and completed suicide in offspring: an analysis of sensitive life periods. Journal of Epidemiology and Community Health 66, 233239.CrossRefGoogle ScholarPubMed
Nithianantharajah, J, Hannan, AJ (2009). The neurobiology of brain and cognitive reserve: mental and physical activity as modulators of brain disorders. Progress in Neurobiology 89, 369382.CrossRefGoogle ScholarPubMed
Nock, MK, Borges, G, Bromet, EJ, Cha, CB, Kessler, RC, Lee, S (2008). Suicide and suicidal behavior. Epidemiologic Reviews 30, 133154.CrossRefGoogle ScholarPubMed
Nock, MK, Greif Green, J, Hwang, I, McLaughlin, KA, Sampson, NA, Zaslavsky, AM, Kessler, RC (2013). Prevalence, correlates, and treatment of lifetime suicidal behavior among adolescents; results from the National Comorbidity Survey Replication Adolescent Supplement. Journal of the American Medical Association Psychiatry 70, 300310.Google ScholarPubMed
Nordesjö, LO, Schéle, R (1974). Validity of an ergometer cycle test and measures of isometric muscle strength when prediction some aspects of military performance. Swedish Journal of Defence Medicine 10, 1123.Google Scholar
Pahkala, K, Hernelahti, M, Heinonen, OJ, Raittinen, P, Hakanen, M, Lagstrom, H, Viikari, JS, Ronnemaa, T, Raitakari, OT, Simell, O (2013). Body mass index, fitness and physical activity from childhood through adolescence. British Journal of Sports Medicine 47, 7177.CrossRefGoogle ScholarPubMed
Qin, P (2011). The impact of psychiatric illness on suicide: differences by diagnosis of disorders and by sex and age of subjects. Journal of Psychiatric Research 45, 14451452.CrossRefGoogle ScholarPubMed
Saitta, P, Keehan, P, Yousif, J, Way, BV, Grekin, S, Brancaccio, R (2011). An update on the presence of psychiatric comorbidities in acne patients, Part 2: Depression, anxiety, and suicide. Cutis 88, 9297.Google ScholarPubMed
Sörberg, A, Allebeck, P, Melin, B, Gunnell, D, Hemmingsson, T (2013). Cognitive ability in early adulthood is associated with later suicide and suicide attempt: the role of risk factors over the life course. Psychological Medicine 43, 4960.CrossRefGoogle ScholarPubMed
Sourander, A, Klomek, AB, Niemela, S, Haavisto, A, Gyllenberg, D, Helenius, H, Sillanmaki, L, Ristkari, T, Kumpulainen, K, Tamminen, T, Moilanen, I, Piha, J, Almqvist, F, Gould, MS (2009). Childhood predictors of completed and severe suicide attempts: findings from the Finnish 1981 Birth Cohort Study. Archives of General Psychiatry 66, 398406.CrossRefGoogle ScholarPubMed
Strawbridge, WJ, Deleger, S, Roberts, RE, Kaplan, GA (2002). Physical activity reduces the risk of subsequent depression for older adults. American Journal of Epidemiology 156, 328334.CrossRefGoogle ScholarPubMed
Tidemalm, D, Runeson, B, Waern, M, Frisell, T, Carlström, E, Lichtenstein, P, Langström, N (2011). Familial clustering of suicide risk: a total population study of 11.4 million individuals. Psychological Medicine 41, 25272534.CrossRefGoogle ScholarPubMed
van Praag, H, Kempermann, G, Gage, FH (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience 2, 266270.CrossRefGoogle ScholarPubMed
Wasserman, D, Wasserman, J, Sokolowski, M (2010). Genetics of HPA-axis, depression and suicidality. European Psychiatry 25, 278280.CrossRefGoogle ScholarPubMed
Whitley, E, Rasmussen, F, Tynelius, P, Batty, GD (2010). Physical stature and method-specific attempted suicide: cohort study of one million men. Psychiatry Research 179, 116118.CrossRefGoogle ScholarPubMed
WHO (2001). The World Health Report – Mental Health, New Understanding, New Hope. World Health Organization: Geneva.Google Scholar
Yau, SY, Lau, BW, So, KF (2011). Adult hippocampal neurogenesis: a possible way how physical exercise counteracts stress. Cell Transplantation 20, 99111.CrossRefGoogle ScholarPubMed
Yoshimasu, K, Kiyohara, C, Miyashita, K (2008). Suicidal risk factors and completed suicide: meta-analyses based on psychological autopsy studies. Environmental Health and Preventive Medicine 13, 243256.CrossRefGoogle ScholarPubMed
Zetterqvist, M, Lundh, LG, Svedin, CG (2012). A comparison of adolescents engaging in self-injurious behaviors with and without suicidal intent: self-reported experiences of adverse life events and trauma symptoms. Journal of Youth and Adolescence. Published online 5 December 2012 . doi:10.1007/s10964-012-9872-6.Google ScholarPubMed
Zheng, H, Liu, Y, Li, W, Yang, B, Chen, D, Wang, X, Jiang, Z, Wang, H, Wang, Z, Cornelisson, G, Halberg, F (2006). Beneficial effects of exercise and its molecular mechanisms on depression in rats. Behavioural Brain Research 168, 4755.CrossRefGoogle ScholarPubMed
Supplementary material: File

Åberg Supplementary Material

Appendix

Download Åberg Supplementary Material(File)
File 48 KB
Supplementary material: File

Åberg Supplementary Material

Appendix

Download Åberg Supplementary Material(File)
File 39 KB
26
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Cardiovascular fitness in early adulthood and future suicidal behaviour in men followed for up to 42 years
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Cardiovascular fitness in early adulthood and future suicidal behaviour in men followed for up to 42 years
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Cardiovascular fitness in early adulthood and future suicidal behaviour in men followed for up to 42 years
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *