Skip to main content Accessibility help
Hostname: page-component-59b7f5684b-vh8gq Total loading time: 0.402 Render date: 2022-10-01T13:09:50.368Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Cognitive impairment from early to middle adulthood in patients with affective and nonaffective psychotic disorders

Published online by Cambridge University Press:  04 January 2019

Josephine Mollon*
Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
Samuel R. Mathias
Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
Emma E. M. Knowles
Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
Amanda Rodrigue
Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
Marinka M. G. Koenis
Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
Godfrey D. Pearlson
Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA
Abraham Reichenberg
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA
Jennifer Barrett
Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA
Dominique Denbow
Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA
Katrina Aberizk
Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA
Molly Zatony
Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA
Russell A. Poldrack
Department of Psychology, Stanford University, Stanford, CA, USA
John Blangero
South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
David C. Glahn
Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA
Author for correspondence: Josephine Mollon, E-mail:



Cognitive impairment is a core feature of psychotic disorders, but the profile of impairment across adulthood, particularly in African-American populations, remains unclear.


Using cross-sectional data from a case–control study of African-American adults with affective (n = 59) and nonaffective (n = 68) psychotic disorders, we examined cognitive functioning between early and middle adulthood (ages 20–60) on measures of general cognitive ability, language, abstract reasoning, processing speed, executive function, verbal memory, and working memory.


Both affective and nonaffective psychosis patients showed substantial and widespread cognitive impairments. However, comparison of cognitive functioning between controls and psychosis groups throughout early (ages 20–40) and middle (ages 40–60) adulthood also revealed age-associated group differences. During early adulthood, the nonaffective psychosis group showed increasing impairments with age on measures of general cognitive ability and executive function, while the affective psychosis group showed increasing impairment on a measure of language ability. Impairments on other cognitive measures remained mostly stable, although decreasing impairments on measures of processing speed, memory and working memory were also observed.


These findings suggest similarities, but also differences in the profile of cognitive dysfunction in adults with affective and nonaffective psychotic disorders. Both affective and nonaffective patients showed substantial and relatively stable impairments across adulthood. The nonaffective group also showed increasing impairments with age in general and executive functions, and the affective group showed an increasing impairment in verbal functions, possibly suggesting different underlying etiopathogenic mechanisms.

Original Articles
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Addington, J and Addington, D (1993) Premorbid functioning, cognitive functioning, symptoms and outcome in schizophrenia. Journal of Psychiatry and Neuroscience 18, 18.Google Scholar
Akaike, H. (1992). Information theory and an extension of the maximum likelihood principle. In Breakthroughs in statistics. Springer, New York, NY, pp. 610624.CrossRefGoogle Scholar
Albus, M, Hubmann, W, Scherer, J, Dreikorn, B, Hecht, S, Sobizack, N and Mohr, F (2002) A prospective 2-year follow-up study of neurocognitive functioning in patients with first-episode schizophrenia. European Archives of Psychiatry and Clinical Neuroscience 252, 262267.CrossRefGoogle ScholarPubMed
Aleman, A, Hijman, R, de Haan, EH and Kahn, RS (1999) Memory impairment in schizophrenia: a meta-analysis. American Journal of Psychiatry 156, 13581366.Google ScholarPubMed
Benedetti, A and Abrahamowicz, M (2004) Using generalized additive models to reduce residual confounding. Statistics in Medicine 23, 37813801.CrossRefGoogle ScholarPubMed
Benjamini, Y and Yekutieli, D (2001) The control of the false discovery rate in multiple testing under dependency. Annals of Statistics 29, 11651188.Google Scholar
Bilder, RM, Lipschutz-Broch, L, Reiter, G, Geisler, SH, Mayerhoff, DI and Lieberman, JA (1992) Intellectual deficits in first-episode schizophrenia: evidence for progressive deterioration. Schizophrenia Bulletin 18, 437.CrossRefGoogle ScholarPubMed
Bonner-Jackson, A, Grossman, LS, Harrow, M and Rosen, C (2010) Neurocognition in schizophrenia: a 20-year multi-follow-up of the course of processing speed and stored knowledge. Comprehensive Psychiatry 51, 471479.CrossRefGoogle ScholarPubMed
Bora, E, Yucel, M and Pantelis, C (2009) Cognitive functioning in schizophrenia, schizoaffective disorder and affective psychoses: meta-analytic study. British Journal of Psychiatry 195, 475482.CrossRefGoogle ScholarPubMed
Bozikas, VP and Andreou, C (2011) Longitudinal studies of cognition in first episode psychosis: a systematic review of the literature. Australian and New Zealand Journal of Psychiatry 45, 93108.CrossRefGoogle ScholarPubMed
Brissos, S, Dias, VV, Balanza-Martinez, V, Carita, AI and Figueira, ML (2011) Symptomatic remission in schizophrenia patients: relationship with social functioning, quality of life, and neurocognitive performance. Schizophrenia Research 129, 133136.CrossRefGoogle ScholarPubMed
Buckley, PF, Miller, BJ, Lehrer, DS and Castle, DJ (2008) Psychiatric comorbidities and schizophrenia. Schizophrenia Bulletin 35, 383402.CrossRefGoogle Scholar
Burdick, KE, Goldberg, JF, Harrow, M, Faull, RN and Malhotra, AK (2006) Neurocognition as a stable endophenotype in bipolar disorder and schizophrenia. The Journal of Nervous and Mental Disease 194, 255260.CrossRefGoogle Scholar
Buuren, SV and Fredriks, M (2001) Worm plot: a simple diagnostic device for modelling growth reference curves. Statistics in Medicine 20, 12591277.CrossRefGoogle ScholarPubMed
Cassano, GB, Pini, S, Saettoni, M, Rucci, P and Dell'Osso, L (1998) Occurrence and clinical correlates of psychiatric comorbidity in patients with psychotic disorders. The Journal of Clinical Psychiatry 59, 6068.CrossRefGoogle ScholarPubMed
Chen, EY, Lam, L, Chen, R, Nguyen, D and Chan, C (1996) Prefrontal neuropsychological impairment and illness duration in schizophrenia: a study of 204 patients in Hong Kong. Acta Psychiatrica Scandinavica 93, 144150.CrossRefGoogle ScholarPubMed
Cohen, J (1992) A power primer. Psychological Bulletin 112, 155.CrossRefGoogle ScholarPubMed
Czaja, SJ, Charness, N, Fisk, AD, Hertzog, C, Nair, SN, Rogers, WA and Sharit, J (2006) Factors predicting the use of technology: findings from the Center for Research and Education on Aging and Technology Enhancement (CREATE). Psychology and Aging 21, 333352.CrossRefGoogle Scholar
D'Souza, MS and Markou, A (2012) Schizophrenia and tobacco smoking comorbidity: nAChR agonists in the treatment of schizophrenia-associated cognitive deficits. Neuropharmacology 62, 15641573.CrossRefGoogle ScholarPubMed
Davidson, M, Harvey, PD, Powchik, P and Parrella, M (1995) Severity of symptoms in chronically institutionalized geriatric schizophrenic patients. The American journal of psychiatry 152, 197.Google ScholarPubMed
Davidson, M, Reichenberg, A, Rabinowitz, J, Weiser, M, Kaplan, Z and Mark, M (1999) Behavioral and intellectual markers for schizophrenia in apparently healthy male adolescents. American Journal of Psychiatry 156, 13281335.Google ScholarPubMed
Deary, IJ, Corley, J, Gow, AJ, Harris, SE, Houlihan, LM, Marioni, RE, Penke, L, Rafnsson, SB and Starr, JM (2009) Age-associated cognitive decline. British medical bulletin 92, 135152.CrossRefGoogle ScholarPubMed
Fett, AK, Viechtbauer, W, Dominguez, MD, Penn, DL, van Os, J and Krabbendam, L (2011) The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: a meta-analysis. Neuroscience & Biobehavioral Reviews 35, 573588.CrossRefGoogle ScholarPubMed
Fioravanti, M, Carlone, O, Vitale, B, Cinti, ME and Clare, L (2005) A meta-analysis of cognitive deficits in adults with a diagnosis of schizophrenia. Neuropsychology Review 15, 7395.CrossRefGoogle ScholarPubMed
First, MB, Spitzer, RL, Gibbon, M and Williams, JB (2002) Structured clinical interview for DSM-IV-TR axis I disorders, research version Patient Edition. SCID-I/P.Google Scholar
Fleming, SK, Blasey, C and Schatzberg, AF (2004) Neuropsychological correlates of psychotic features in major depressive disorders: a review and meta-analysis. Journal of Psychiatric Research 38, 2735.CrossRefGoogle ScholarPubMed
Friedman, JI, Harvey, PD, Coleman, T, Moriarty, PJ, Bowie, C, Parrella, M, White, L, Adler, D and Davis, KL (2001) Six-year follow-up study of cognitive and functional status across the lifespan in schizophrenia: a comparison with Alzheimer's disease and normal aging. American Journal of Psychiatry 158, 14411448.CrossRefGoogle ScholarPubMed
Fucetola, R, Seidman, LJ, Kremen, WS, Faraone, SV, Goldstein, JM and Tsuang, MT (2000) Age and neuropsychologic function in schizophrenia: a decline in executive abilities beyond that observed in healthy volunteers. Biological Psychiatry 48, 137146.CrossRefGoogle ScholarPubMed
Gallego, JA, Bonetti, J, Zhang, J, Kane, JM and Correll, CU (2012) Prevalence and correlates of antipsychotic polypharmacy: a systematic review and meta-regression of global and regional trends from the 1970s to 2009. Schizophrenia Research 138, 1828.CrossRefGoogle ScholarPubMed
Glahn, DC, Bearden, CE, Cakir, S, Barrett, JA, Najt, P, Serap Monkul, E, Maples, N, Velligan, DI and Soares, JC (2006) Differential working memory impairment in bipolar disorder and schizophrenia: effects of lifetime history of psychosis. Bipolar Disorders 8, 117123.CrossRefGoogle ScholarPubMed
Glahn, DC, Bearden, CE, Barguil, M, Barrett, J, Reichenberg, A, Bowden, CL, Soares, JC and Velligan, DI (2007) The neurocognitive signature of psychotic bipolar disorder. Biological Psychiatry 62, 910916.CrossRefGoogle ScholarPubMed
Gooding, DC and Tallent, KA (2002) Spatial working memory performance in patients with schizoaffective psychosis versus schizophrenia: a tale of two disorders? Schizophrenia Research 53, 209218.CrossRefGoogle ScholarPubMed
Green, MF, Kern, RS, Braff, DL and Mintz, J (2000) Neurocognitive deficits and functional outcome in schizophrenia. Schizophrenia Bulletin 26, 119136.CrossRefGoogle Scholar
Gur, RE, Cowell, P, Turetsky, BI, Gallacher, F, Cannon, T, Bilker, W and Gur, RC (1998) A follow-up magnetic resonance imaging study of schizophrenia: relationship of neuroanatomical changes to clinical and neurobehavioral measures. Archives of General Psychiatry 55, 145152.CrossRefGoogle ScholarPubMed
Gur, RC, Calkins, ME, Satterthwaite, TD, Ruparel, K, Bilker, WB, Moore, TM, Savitt, AP, Hakonarson, H and Gur, RE (2014) Neurocognitive growth charting in psychosis spectrum youths. JAMA Psychiatry 71, 366374.CrossRefGoogle ScholarPubMed
Hall, RC (1995) Global assessment of functioning: a modified scale. Psychosomatics 36, 267275.CrossRefGoogle ScholarPubMed
Hartshorne, JK and Germine, LT (2015) When does cognitive functioning peak? The asynchronous rise and fall of different cognitive abilities across the life span. Psychological Science 26, 433443.CrossRefGoogle ScholarPubMed
Harvey, PD, Silverman, JM, Mohs, RC, Parrella, M, White, L, Powchik, P, Davidson, M and Davis, KL (1999) Cognitive decline in late-life schizophrenia: a longitudinal study of geriatric chronically hospitalized patients. Biological Psychiatry 45, 3240.CrossRefGoogle ScholarPubMed
Heilbronner, U, Samara, M, Leucht, S, Falkai, P and Schulze, TG (2016) The longitudinal course of schizophrenia across the lifespan: clinical, cognitive, and neurobiological aspects. Harvard Review of Psychiatry 24, 118128.CrossRefGoogle ScholarPubMed
Hill, SK, Schuepbach, D, Herbener, ES, Keshavan, MS and Sweeney, JA (2004) Pretreatment and longitudinal studies of neuropsychological deficits in antipsychotic-naıve patients with schizophrenia. Schizophrenia Research 68, 4963.CrossRefGoogle ScholarPubMed
Hyde, TM, Nawroz, S, Goldberg, TE, Bigelow, LB, Strong, D, Ostrem, JL, Weinberger, DR and Kleinman, JE (1994) Is there cognitive decline in schizophrenia? A cross-sectional study. The British Journal of Psychiatry 164, 494500.CrossRefGoogle ScholarPubMed
Jones, P, Murray, R, Jones, P, Rodgers, B and Marmot, M (1994) Child developmental risk factors for adult schizophrenia in the British 1946 birth cohort. The Lancet 344, 13981402.CrossRefGoogle ScholarPubMed
Levinson, DF, Mowry, BJ, Escamilla, MA and Faraone, SV (2002) The Lifetime Dimensions of Psychosis Scale (LDPS): description and interrater reliability. Schizophrenia Bulletin 28, 683695.CrossRefGoogle ScholarPubMed
Lin, X and Zhang, D (1999) Inference in generalized additive mixed models by using smoothing splines. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61, 381400.CrossRefGoogle Scholar
Løberg, E-M and Hugdahl, K (2009) Cannabis use and cognition in schizophrenia. Frontiers in Human Neuroscience 3, 5361.CrossRefGoogle ScholarPubMed
MacCabe, JH, Wicks, S, Lofving, S, David, AS, Berndtsson, A, Gustafsson, JE, Allebeck, P and Dalman, C (2013) Decline in cognitive performance between ages 13 and 18 years and the risk for psychosis in adulthood: a Swedish longitudinal cohort study in males. JAMA Psychiatry 70, 261270.CrossRefGoogle ScholarPubMed
Mathias, SR, Knowles, EEM, Barrett, J, Leach, O, Buccheri, S, Beetham, T, Blangero, J, Poldrack, RA and Glahn, DC (2017) The processing-speed impairment in psychosis is more than just accelerated aging. Schizophrenia Bulletin 43, 814823.Google ScholarPubMed
Mathias, SR, Knowles, EEM, Barrett, J, Beetham, T, Leach, O, Buccheri, S, Aberizk, K, Blangero, J, Poldrack, RA and Glahn, DC (2018) Deficits in visual working-memory capacity and general cognition in African Americans with psychosis. Schizophrenia Research 193, 100106.CrossRefGoogle ScholarPubMed
McGurk, SR, Mueser, KT, DeRosa, TJ and Wolfe, R (2009) Work, recovery, and comorbidity in schizophrenia: a randomized controlled trial of cognitive remediation. Schizophrenia Bulletin 35, 319335.CrossRefGoogle ScholarPubMed
Meier, MH, Caspi, A, Reichenberg, A, Keefe, RS, Fisher, HL, Harrington, H, Houts, R, Poulton, R and Moffitt, TE (2013) Neuropsychological decline in schizophrenia from the premorbid to the postonset period: evidence from a population-representative longitudinal study. American Journal of Psychiatry 171, 91101.CrossRefGoogle Scholar
Mockler, D, Riordan, J and Sharma, T (1997) Memory and intellectual deficits do not decline with age in schizophrenia. Schizophrenia Research 26, 17.CrossRefGoogle ScholarPubMed
Mohamed, S, Paulsen, JS, O'leary, D, Arndt, S and Andreasen, N (1999) Generalized cognitive deficits in schizophrenia: a study of first-episode patients. Archives of General Psychiatry 56, 749754.CrossRefGoogle ScholarPubMed
Mojtabai, R, Bromet, EJ, Harvey, PD, Carlson, GA, Craig, TJ and Fennig, S (2000) Neuropsychological differences between first-admission schizophrenia and psychotic affective disorders. American Journal of Psychiatry 157, 14531460.CrossRefGoogle ScholarPubMed
Mollon, J, David, AS, Zammit, S, Lewis, G and Reichenberg, A (2018) Course of cognitive development from infancy to early adulthood in the psychosis spectrum. JAMA Psychiatry 75, 270279.CrossRefGoogle ScholarPubMed
Mueser, KT, Bellack, AS and Blanchard, JJ (1992) Comorbidity of schizophrenia and substance abuse: Implications for treatment. Journal of Consulting and Clinical Psychology 60, 845.CrossRefGoogle ScholarPubMed
O'Leary, DS, Flaum, M, Kesler, ML, Flashman, LA, Arndt, S and Andreasen, NC (2000) Cognitive correlates of the negative, disorganized, and psychotic symptom dimensions of schizophrenia. The Journal of Neuropsychiatry and Clinical Neurosciences 12, 415.CrossRefGoogle ScholarPubMed
Pencer, A and Addington, J (2003) Substance use and cognition in early psychosis. Journal of Psychiatry and Neuroscience 28, 48.Google ScholarPubMed
Pirkola, T, Tuulio-Henriksson, A, Glahn, D, Kieseppa, T, Haukka, J, Kaprio, J, Lonnqvist, J and Cannon, TD (2005) Spatial working memory function in twins with schizophrenia and bipolar disorder. Biological Psychiatry 58, 930936.CrossRefGoogle ScholarPubMed
R Development Core Team (2008) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Rajji, TK and Mulsant, BH (2008) Nature and course of cognitive function in late-life schizophrenia: a systematic review. Schizophrenia Research 102, 122140.CrossRefGoogle ScholarPubMed
Reichenberg, A and Harvey, PD (2007) Neuropsychological impairments in schizophrenia: integration of performance-based and brain imaging findings. Psychological Bulletin 133, 833858.CrossRefGoogle ScholarPubMed
Reichenberg, A, Harvey, PD, Bowie, CR, Mojtabai, R, Rabinowitz, J, Heaton, RK and Bromet, E (2009) Neuropsychological function and dysfunction in schizophrenia and psychotic affective disorders. Schizophrenia Bulletin 35, 10221029.CrossRefGoogle ScholarPubMed
Salthouse, T. A. (2009). When does age-related cognitive decline begin? Neurobiology of Aging 30, 507514.CrossRefGoogle ScholarPubMed
Samamé, C, Martino, DJ and Strejilevich, SA (2014) Longitudinal course of cognitive deficits in bipolar disorder: a meta-analytic study. Journal of Affective Disorders 164, 130138.CrossRefGoogle ScholarPubMed
Schatzberg, AF, Posener, JA, DeBattista, C, Kalehzan, BM, Rothschild, AJ and Shear, PK (2000) Neuropsychological deficits in psychotic versus nonpsychotic major depression and no mental illness. American Journal of Psychiatry 157, 10951100.CrossRefGoogle ScholarPubMed
Schwarz, G (1978) Estimating the dimension of a model. The Annals of Statistics 6, 461464.CrossRefGoogle Scholar
Seidman, LJ, Buka, SL, Goldstein, JM and Tsuang, MT (2006) Intellectual decline in schizophrenia: evidence from a prospective birth cohort 28 year follow-up study. Journal of Clinical and Experimental Neuropsychology 28, 225242.CrossRefGoogle ScholarPubMed
Siman-Tov, T, Bosak, N, Sprecher, E, Paz, R, Eran, A, Aharon-Peretz, J and Kahn, I (2016) Early age-related functional connectivity decline in high-order cognitive networks. Frontiers in Aging Neuroscience 8, 330.Google ScholarPubMed
Singh-Manoux, A, Kivimaki, M, Glymour, MM, Elbaz, A, Berr, C, Ebmeier, KP, Ferrie, JE and Dugravot, A (2012) Timing of onset of cognitive decline: results from Whitehall II prospective cohort study. BMJ 344, d7622.CrossRefGoogle ScholarPubMed
Smith, PL (1979) Splines as a useful and convenient statistical tool. The American Statistician 33, 5762.Google Scholar
Stahl, S and Grady, M (2004) A critical review of atypical antipsychotic utilization: comparing monotherapy with polypharmacy and augmentation. Current Medicinal Chemistry 11, 313327.CrossRefGoogle ScholarPubMed
Szöke, A, Trandafir, A, Dupont, M-E, Méary, A, Schürhoff, F and Leboyer, M (2008) Longitudinal studies of cognition in schizophrenia: meta-analysis. The British Journal of Psychiatry 192, 248257.CrossRefGoogle ScholarPubMed
Vorstman, JA, Breetvelt, EJ, Duijff, SN, Eliez, S, Schneider, M, Jalbrzikowski, M, Armando, M, Vicari, S, Shashi, V, Hooper, SR, Chow, EW, Fung, WL, Butcher, NJ, Young, DA, McDonald-McGinn, DM, Vogels, A, van Amelsvoort, T, Gothelf, D, Weinberger, R, Weizman, A, Klaassen, PW, Koops, S, Kates, WR, Antshel, KM, Simon, TJ, Ousley, OY, Swillen, A, Gur, RE, Bearden, CE, Kahn, RS and Bassett, AS and for the International Consortium on, B. & Behavior in 22q11.2 Deletion, S (2015) Cognitive decline preceding the onset of psychosis in patients with 22q11.2 deletion syndrome. JAMA Psychiatry 72, 377385.CrossRefGoogle ScholarPubMed
Yucel, M, Bora, E, Lubman, DI, Solowij, N, Brewer, WJ, Cotton, SM, Conus, P, Takagi, MJ, Fornito, A, Wood, SJ, McGorry, PD and Pantelis, C (2012) The impact of cannabis use on cognitive functioning in patients with schizophrenia: a meta-analysis of existing findings and new data in a first-episode sample. Schizophrenia Bulletin 38, 316330.CrossRefGoogle Scholar
Zanelli, J, Reichenberg, A, Morgan, K, Fearon, P, Kravariti, E, Dazzan, P, Morgan, C, Zanelli, C, Demjaha, A and Jones, PB (2010) Specific and generalized neuropsychological deficits: a comparison of patients with various first-episode psychosis presentations. American Journal of Psychiatry 167, 7885.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Mollon et al. supplementary material

Mollon et al. supplementary material
Download Mollon et al. supplementary material(PDF)
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Cognitive impairment from early to middle adulthood in patients with affective and nonaffective psychotic disorders
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Cognitive impairment from early to middle adulthood in patients with affective and nonaffective psychotic disorders
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Cognitive impairment from early to middle adulthood in patients with affective and nonaffective psychotic disorders
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *