Skip to main content Accessibility help
Hostname: page-component-55597f9d44-fnprw Total loading time: 0.379 Render date: 2022-08-17T05:36:30.274Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Linkage scan of nicotine dependence in the University of California, San Francisco (UCSF) Family Alcoholism Study

Published online by Cambridge University Press:  01 July 2010

I. R. Gizer*
Department of Genetics, University of North Carolina, Chapel Hill, NC, USA Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
C. L. Ehlers
Department of Molecular and Integrative Neurosciences, The Scripps Research Institute, La Jolla, CA, USA
C. Vieten
California Pacific Medical Center, San Francisco, CA, USA
K. L. Seaton-Smith
Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
H. S. Feiler
Department of Laboratory Medicine, University of California, San Francisco, CA, USA
J. V. Lee
School of Molecular and Cell Biology, University of Illinois, Urbana–Champaign, IL, USA
S. K. Segall
Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
D. A. Gilder
Department of Molecular and Integrative Neurosciences, The Scripps Research Institute, La Jolla, CA, USA
K. C. Wilhelmsen
Department of Genetics, University of North Carolina, Chapel Hill, NC, USA Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA Department of Neurology, Carolina Genome Center, University of North Carolina, Chapel Hill, NC, USA
*Address for correspondence: I. R. Gizer, Ph.D., University of North Carolina at Chapel Hill, 120 Mason Farm Road, Room 5015 Genetic Medicine Building CB 7264, Chapel Hill, NC27599-7264, USA. (Email:



Nicotine dependence has been shown to represent a heritable condition, and several research groups have performed linkage analysis to identify genomic regions influencing this disorder though only a limited number of the findings have been replicated.


In the present study, a genome-wide linkage scan for nicotine dependence was conducted in a community sample of 950 probands and 1204 relatives recruited through the University of California, San Francisco (UCSF) Family Alcoholism Study. A modified version of the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA) with additional questions that probe nicotine use was used to derive DSM-IV nicotine dependence diagnoses.


A locus on chromosome 2q31.1 at 184 centiMorgans nearest to marker D2S2188 yielded a logarithm (base 10) of odds (LOD) score of 3.54 (point-wise empirical p=0.000012). Additional peaks of interest were identified on chromosomes 2q13, 4p15.33-31, 11q25 and 12p11.23-21. Follow-up analyses were conducted examining the contributions of individual nicotine dependence symptoms to the chromosome 2q31.1 linkage peak as well as examining the relationship of this chromosomal region to alcohol dependence.


The present report suggests that chromosome 2q31.1 confers risk to the development of nicotine dependence and that this region influences a broad range of nicotine dependence symptoms rather than a specific facet of the disorder. Further, the results show that this region is not linked to alcohol dependence in this population, and thus may influence nicotine dependence specifically.

Original Articles
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Abecasis, GR, Cherny, SS, Cookson, WO, Cardon, LR (2002). Merlin – rapid analysis of dense genetic maps using sparse gene flow trees. Nature Genetics 30, 97–101.CrossRefGoogle ScholarPubMed
Almasy, L, Blangero, J (1998). Multipoint quantitative-trait linkage analysis in general pedigrees. American Journal of Human Genetics 62, 11981211.CrossRefGoogle ScholarPubMed
Amos, CI, Krushkal, J, Thiel, TJ, Young, A, Zhu, DK, Boerwinkle, E, de Andrade, M (1997). Comparison of model-free linkage mapping strategies for the study of a complex trait. Genetic Epidemiology 14, 743748.3.0.CO;2-O>CrossRefGoogle Scholar
APA (1994). Diagnostic and Statistical Manual of Mental Disorders: DSM-IV. American Psychiatric Association: Washington.Google Scholar
Bergen, AW, Korczak, JF, Weissbecker, KA, Goldstein, AM (1999). A genome-wide search for loci contributing to smoking and alcoholism. Genetic Epidemiology 17 (Suppl.), S55S60.CrossRefGoogle ScholarPubMed
Bierut, LJ, Madden, PA, Breslau, N, Johnson, EO, Hatsukami, D, Pomerleau, OF, Swan, GE, Rutter, J, Bertelsen, S, Fox, L, Fugman, D, Goate, AM, Hinrichs, AL, Konvicka, K, Martin, NG, Montgomery, GW, Saccone, NL, Saccone, SF, Wang, JC, Chase, GA, Rice, JP, Ballinger, DG (2007). Novel genes identified in a high-density genome wide association study for nicotine dependence. Human Molecular Genetics 16, 2435.CrossRefGoogle Scholar
Bierut, LJ, Rice, JP, Goate, A, Hinrichs, AL, Saccone, NL, Foroud, T, Edenberg, HJ, Cloninger, CR, Begleiter, H, Conneally, PM, Crowe, RR, Hesselbrock, V, Li, TK, Nurnberger, JI Jr., Porjesz, B, Schuckit, MA, Reich, T (2004). A genomic scan for habitual smoking in families of alcoholics: common and specific genetic factors in substance dependence. American Journal of Medical Genetics 124A, 1927.CrossRefGoogle ScholarPubMed
Bucholz, KK, Cadoret, R, Cloninger, CR, Dinwiddie, SH, Hesselbrock, VM, Nurnberger, JI Jr., Reich, T, Schmidt, I, Schuckit, MA (1994). A new, semi-structured psychiatric interview for use in genetic linkage studies: a report on the reliability of the SSAGA. Journal of Studies on Alcohol 55, 149158.CrossRefGoogle ScholarPubMed
Carmelli, D, Swan, GE, Robinette, D, Fabsitz, RR (1990). Heritability of substance use in the NAS-NRC Twin Registry. Acta Geneticae Medicae et Gemellologiae (Roma) 39, 9198.CrossRefGoogle ScholarPubMed
Carre, N, Cauzac, M, Girard, J, Burnol, AF (2008). Dual effect of the adapter growth factor receptor-bound protein 14 (grb14) on insulin action in primary hepatocytes. Endocrinology 149, 31093117.CrossRefGoogle ScholarPubMed
Duggirala, R, Almasy, L, Blangero, J (1999). Smoking behavior is under the influence of a major quantitative trait locus on human chromosome 5q. Genetic Epidemiology 17 (Suppl.), S139S144.CrossRefGoogle Scholar
Duggirala, R, Blangero, J, Almasy, L, Arya, R, Dyer, TD, Williams, KL, Leach, RJ, O'Connell, P, Stern, MP (2001). A major locus for fasting insulin concentrations and insulin resistance on chromosome 6q with strong pleiotropic effects on obesity-related phenotypes in nondiabetic Mexican Americans. American Journal of Human Genetics 68, 11491164.CrossRefGoogle Scholar
Duggirala, R, Williams, JT, Williams-Blangero, S, Blangero, J (1997). A variance component approach to dichotomous trait linkage analysis using a threshold model. Genetic Epidemiology 14, 987992.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Ehlers, CL, Wilhelmsen, KC (2006). Genomic screen for loci associated with tobacco usage in Mission Indians. BMC Medical Genetics 7, 19.CrossRefGoogle ScholarPubMed
Faraone, SV, Su, J, Taylor, L, Wilcox, M, Van Eerdewegh, P, Tsuang, MT (2004). A novel permutation testing method implicates sixteen nicotinic acetylcholine receptor genes as risk factors for smoking in schizophrenia families. Human Heredity 57, 5968.CrossRefGoogle ScholarPubMed
Goode, EL, Badzioch, MD, Kim, H, Gagnon, F, Rozek, LS, Edwards, KL, Jarvik, GP; Framingham Heart Study (2003). Multiple genome-wide analyses of smoking behavior in the Framingham Heart Study. BMC Genetics 4 (Suppl.), S102.CrossRefGoogle ScholarPubMed
Goring, HH (2002). Hlod (Homo v. 0.2) documentation. SOLAR Online User's Manual ( Scholar
Heath, AC, Madden, PA (1995). Genetic influences on smoking behavior. In Behavior Genetic Approaches in Behavioral Medicine (ed. Turner, J. R., Cardon, L. R. and Hewitt, J. K.), pp. 4566. New York: Plenum.CrossRefGoogle ScholarPubMed
Heatherton, TF, Kozlowski, LT, Frecker, RC, Fagerström, KO (1991). The Fagerström Test for Nicotine Dependence: a revision of the Fagerström Tolerance Questionnaire. British Journal of Addiction 86, 11191127.CrossRefGoogle ScholarPubMed
Jia, J, Han, Q, Borregaard, N, Lollike, K, Cygler, M (2000). Crystal structure of human grancalcin, a member of the penta-EF-hand protein family. Journal of Molecular Biology 300, 12711281.CrossRefGoogle ScholarPubMed
Jung, J, Weeks, DE, Feingold, E (2006). Gene-dropping vs. empirical variance estimation for allele-sharing linkage statistics. Genetic Epidemiology 30, 652665.CrossRefGoogle ScholarPubMed
Kendler, KS, Myers, J, Prescott, CA (2007). Specificity of genetic and environmental risk factors for symptoms of cannabis, cocaine, alcohol, caffeine, and nicotine dependence. Archives of General Psychiatry 64, 13131320.CrossRefGoogle ScholarPubMed
Kendler, KS, Neale, MC, Sullivan, P, Corey, LA, Gardner, CO, Prescott, CA (1999). A population-based twin study in women of smoking initiation and nicotine dependence. Psychological Medicine 29, 299308.CrossRefGoogle ScholarPubMed
Kong, A, Cox, NJ (1997). Allele-sharing models: LOD scores and accurate linkage tests. American Journal of Human Genetics 61, 11791188.CrossRefGoogle ScholarPubMed
Lander, E, Kruglyak, L (1995). Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genetics 11, 241247.CrossRefGoogle ScholarPubMed
Lessov, CN, Martin, NG, Statham, DJ, Todorov, AA, Slutske, WS, Bucholz, KK, Heath, AC, Madden, PAF (2004). Defining nicotine dependence for genetic research: evidence from Australian twins. Psychological Medicine 34, 865879.CrossRefGoogle ScholarPubMed
Li, MD (2008). Identifying susceptibility loci for nicotine dependence: 2008 update based on recent genome-wide linkage analyses. Human Genetics 123, 119131.CrossRefGoogle ScholarPubMed
Li, MD, Cheng, R, Ma, JZ, Swan, GE (2003). A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins. Addiction 98, 2331.CrossRefGoogle ScholarPubMed
Li, MD, Ma, JZ, Payne, TJ, Lou, XY, Zhang, D, Dupont, RT, Elston, RC (2008). Genome-wide linkage scan for nicotine dependence in European Americans and its converging results with African Americans in the Mid-South Tobacco Family sample. Molecular Psychiatry 13, 407416.CrossRefGoogle ScholarPubMed
Lou, XY, Ma, JZ, Payne, TJ, Beuten, J, Crew, KM, Li, MD (2006). Gene-based analysis suggests association of the nicotinic acetylcholine receptor β1 subunit (CHRNB1) and M1 muscarinic acetylcholine receptor (CHRM1) with vulnerability for nicotine dependence. Human Genetics 120, 381389.CrossRefGoogle ScholarPubMed
Loukola, A, Broms, U, Maunu, H, Widen, E, Heikkila, K, Siivola, M, Salo, A, Pergadia, ML, Nyman, E, Sammalisto, S, Perola, M, Agrawal, A, Heath, AC, Martin, NG, Madden, PA, Peltonen, L, Kaprio, J (2008). Linkage of nicotine dependence and smoking behavior on 10q, 7q and 11p in twins with homogeneous genetic background. Pharmacogenomics Journal 8, 209219.CrossRefGoogle ScholarPubMed
McPeek, MS, Sun, L (2000). Statistical tests for detection of misspecified relationships by use of genome-screen data. American Journal of Human Genetics 66, 10761094.CrossRefGoogle ScholarPubMed
Miller, NS, Gold, MS (1998). Comorbid cigarette and alcohol addiction: epidemiology and treatment. Journal of Addictive Diseases 17, 5566.CrossRefGoogle ScholarPubMed
Mokdad, AH, Marks, JS, Stroup, DF, Gerberding, JL (2004). Actual causes of death in the United States, 2000. Journal of the American Medical Association 291, 12381245.CrossRefGoogle ScholarPubMed
Morley, KI, Medland, SE, Ferreira, MA, Lynskey, MT, Montgomery, GW, Heath, AC, Madden, PA, Martin, NG (2006). A possible smoking susceptibility locus on chromosome 11p12: evidence from sex-limitation linkage analyses in a sample of Australian Twin Families. Behavior Genetics 36, 8799.CrossRefGoogle Scholar
Munafö, M, Clark, T, Johnstone, E, Murphy, M, Walton, R (2004). The genetic basis for smoking behavior: a systematic review and meta-analysis. Nicotine & Tobacco Research 6, 583597.Google ScholarPubMed
North, BV, Curtis, D, Sham, PC (2002). A note on the calculation of empirical P values from Monte Carlo procedures. American Journal of Human Genetics 71, 439441.CrossRefGoogle ScholarPubMed
Nussbaum, J, Xu, Q, Payne, TJ, Ma, JZ, Huang, W, Gelernter, J, Li, MD (2008). Significant association of the neurexin-1 gene (NRXN1) with nicotine dependence in European- and African-American smokers. Human Molecular Genetics 17, 15691577.CrossRefGoogle ScholarPubMed
O'Connell, JR, Weeks, DE (1998). PedCheck: a program for identification of genotype incompatibilities in linkage analysis. American Journal of Human Genetics 63, 259266.CrossRefGoogle ScholarPubMed
Seaton, KL, Cornell, JL, Wilhelmsen, KC, Vieten, C (2004). Effective strategies for recruiting families ascertained through alcoholic probands. Alcoholism: Clinical and Experimental Research 28, 7884.CrossRefGoogle ScholarPubMed
Sherva, R, Wilhelmsen, K, Pomerleau, CS, Chasse, SA, Rice, JP, Snedecor, SM, Bierut, LJ, Neuman, RJ, Pomerleau, OF (2008). Association of a single nucleotide polymorphism in neuronal acetylcholine receptor subunit α5 (CHRNA5) with smoking status and with ‘pleasurable buzz’ during early experimentation with smoking. Addiction 103, 15441552.CrossRefGoogle Scholar
Straub, RE, Sullivan, PF, Ma, Y, Myakishev, MV, Harris-Kerr, C, Wormley, B, Kadambi, B, Sadek, H, Silverman, MA, Webb, BT, Neale, MC, Bulik, CM, Joyce, PR, Kendler, KS (1999). Susceptibility genes for nicotine dependence: a genome scan and followup in an independent sample suggest that regions on chromosomes 2, 4, 10, 16, 17 and 18 merit further study. Molecular Psychiatry 4, 129144.CrossRefGoogle Scholar
Su, AI, Wiltshire, T, Batalov, S, Lapp, H, Ching, KA, Block, D, Zhang, J, Soden, R, Hayakawa, M, Kreiman, G, Cooke, MP, Walker, JR, Hogenesch, JB (2004). A gene atlas of the mouse and human protein-encoding transcriptomes. Proceedings of the National Academy of Sciences USA 101, 60626067.CrossRefGoogle ScholarPubMed
Sullivan, PF, Kendler, KS (1999). The genetic epidemiology of smoking. Nicotine & Tobacco Research 1, S51–57.CrossRefGoogle ScholarPubMed
Sullivan, PF, Kuo, PH, Webb, BT, Neale, MC, Vittum, J, Furberg, H, Walsh, D, Patterson, DG, Riley, B, Prescott, CA, Kendler, KS (2008). Genomewide linkage survey of nicotine dependence phenotypes. Drug and Alcohol Dependence 93, 210216.CrossRefGoogle ScholarPubMed
Sullivan, PF, Neale, BM, van den Oord, E, Miles, MF, Neale, MC, Bulik, CM, Joyce, PR, Straub, RE, Kendler, KS (2004). Candidate genes for nicotine dependence via linkage, epistasis, and bioinformatics. American Journal of Medical Genetics 126B, 2336.CrossRefGoogle ScholarPubMed
Swan, GE, Carmelli, D, Cardon, LR (1997). Heavy consumption of cigarettes, alcohol and coffee in male twins. Journal of Studies on Alcohol 58, 182190.CrossRefGoogle ScholarPubMed
True, WR, Xian, H, Scherrer, JF, Madden, PA, Bucholz, KK, Heath, AC, Eisen, SA, Lyons, MJ, Goldberg, J, Tsuang, M (1999). Common genetic vulnerability for nicotine and alcohol dependence in men. Archives of General Psychiatry 56, 655661.CrossRefGoogle ScholarPubMed
Vieten, C, Seaton, KL, Feiler, HS, Wilhelmsen, KC (2004). The University of California, San Francisco Family Alcoholism Study. I. Design, methods, and demographics. Alcoholism: Clinical and Experimental Research 28, 15091516.CrossRefGoogle ScholarPubMed
Vink, JM, Smit, AB, de Geus, EJ, Sullivan, P, Willemsen, G, Hottenga, JJ, Smit, JH, Hoogendijk, WJ, Zitman, FG, Peltonen, L, Kaprio, J, Pedersen, NL, Magnusson, PK, Spector, TD, Kyvik, KO, Morley, KI, Heath, AC, Martin, NG, Westendorp, RG, Slagboom, PE, Tiemeier, H, Hofman, A, Uitterlinden, AG, Aulchenko, YS, Amin, N, van Duijn, C, Penninx, BW, Boomsma, DI (2009). Genome-wide association study of smoking initiation and current smoking. American Journal of Human Genetics 84, 367379.CrossRefGoogle ScholarPubMed
Volk, HE, Scherrer, JF, Bucholz, KK, Todorov, A, Heath, AC, Jacob, T, True, WR (2007). Evidence for specificity of transmission of alcohol and nicotine dependence in an offspring of twins design. Drug and Alcohol Dependence 87, 225232.CrossRefGoogle Scholar
Wang, D, Ma, JZ, Li, MD (2005). Mapping and verification of susceptibility loci for smoking quantity using permutation linkage analysis. Pharmacogenomics Journal 5, 166172.CrossRefGoogle ScholarPubMed
Wilhelmsen, KC, Schuckit, M, Smith, TL, Lee, JV, Segall, SK, Feiler, HS, Kalmijn, J (2003). The search for genes related to a low-level response to alcohol determined by alcohol challenges. Alcoholism: Clinical and Experimental Research 27, 10411047.CrossRefGoogle ScholarPubMed
Yang, HC, Chang, CC, Lin, CY, Chen, CL, Lin, CY, Fann, CS (2005). A genome-wide scanning and fine mapping study of COGA data. BMC Genetics 6 (Suppl.), S30.CrossRefGoogle ScholarPubMed
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Linkage scan of nicotine dependence in the University of California, San Francisco (UCSF) Family Alcoholism Study
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Linkage scan of nicotine dependence in the University of California, San Francisco (UCSF) Family Alcoholism Study
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Linkage scan of nicotine dependence in the University of California, San Francisco (UCSF) Family Alcoholism Study
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *