Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T15:31:22.572Z Has data issue: false hasContentIssue false

Cortical GABA markers identify a molecular subtype of psychotic and bipolar disorders

Published online by Cambridge University Press:  22 June 2016

D. W. Volk*
Affiliation:
Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
A. R. Sampson
Affiliation:
Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
Y. Zhang
Affiliation:
Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
J. R. Edelson
Affiliation:
Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
D. A. Lewis
Affiliation:
Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
*
*Address for correspondence: D. W. Volk, M.D., Ph.D., Department of Psychiatry, University of Pittsburgh, W1655 BST, 3811 O'Hara St, Pittsburgh, PA 15213, USA. (Email: volkdw@upmc.edu)

Abstract

Background

Deficits in gamma aminobutyric acid (GABA) neuron-related markers, including the GABA-synthesizing enzyme GAD67, the calcium-binding protein parvalbumin, the neuropeptide somatostatin, and the transcription factor Lhx6, are most pronounced in a subset of schizophrenia subjects identified as having a ‘low GABA marker’ (LGM) molecular phenotype. Furthermore, schizophrenia shares degrees of genetic liability, clinical features and cortical circuitry abnormalities with schizoaffective disorder and bipolar disorder. Therefore, we determined the extent to which a similar LGM molecular phenotype may also exist in subjects with these disorders.

Method

Transcript levels for GAD67, parvalbumin, somatostatin, and Lhx6 were quantified using quantitative PCR in prefrontal cortex area 9 of 184 subjects with a diagnosis of schizophrenia (n = 39), schizoaffective disorder (n = 23) or bipolar disorder (n = 35), or with a confirmed absence of any psychiatric diagnoses (n = 87). A blinded clustering approach was employed to determine the presence of a LGM molecular phenotype across all subjects.

Results

Approximately 49% of the subjects with schizophrenia, 48% of the subjects with schizoaffective disorder, and 29% of the subjects with bipolar disorder, but only 5% of unaffected subjects, clustered in the cortical LGM molecular phenotype.

Conclusions

These findings support the characterization of psychotic and bipolar disorders by cortical molecular phenotype which may help elucidate more pathophysiologically informed and personalized medications.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbarian, S, Kim, JJ, Potkin, SG, Hagman, JO, Tafazzoli, A, Bunney, JWE, Jones, EG (1995). Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Archives of General Psychiatry 52, 258266.Google Scholar
American Psychiatric Association (1994). DSM-IV. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. American Psychiatric Association: Washington, DC.Google Scholar
Bloomfield, PS, Selvaraj, S, Veronese, M, Rizzo, G, Bertoldo, A, Owen, DR, Bloomfield, MA, Bonoldi, I, Kalk, N, Turkheimer, F, McGuire, P, de Paola, V, Howes, OD (2016). Microglial activity in people at ultra high risk of psychosis and in Schizophrenia: an [(11)C]PBR28 PET Brain Imaging Study. American Journal of Psychiatry 173, 4452.Google Scholar
Cho, RY, Konecky, RO, Carter, CS (2006). Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia. Proceedings of the National Academy of Sciences USA 103, 1987819883.Google Scholar
Curley, AA, Arion, D, Volk, DW, Asafu-Adjei, JK, Sampson, AR, Fish, KN, Lewis, DA (2011). Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell type-specific features. American Journal of Psychiatry 168, 921929.Google Scholar
Cuthbert, BN (2014). The RDoC framework: facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatry 13, 2835.Google Scholar
Duncan, CE, Webster, MJ, Rothmond, DA, Bahn, S, Elashoff, M, Shannon, WC (2010). Prefrontal GABA(A) receptor alpha-subunit expression in normal postnatal human development and schizophrenia. Journal of Psychiatric Research 44, 673681.Google Scholar
Fanous, AH, Middleton, FA, Gentile, K, Amdur, RL, Maher, BS, Zhao, Z, Sun, J, Medeiros, H, Carvalho, C, Ferreira, SR, Macedo, A, Knowles, JA, Azevedo, MH, Pato, MT, Pato, CN (2012). Genetic overlap of schizophrenia and bipolar disorder in a high-density linkage survey in the Portuguese Island population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 159B, 383391.CrossRefGoogle Scholar
Fillman, SG, Cloonan, N, Catts, VS, Miller, LC, Wong, J, McCrossin, T, Cairns, M, Weickert, CS (2013). Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Molecular Psychiatry 18, 206214.Google Scholar
Fung, SJ, Webster, MJ, Sivagnanasundaram, S, Duncan, C, Elashoff, M, Weickert, CS (2010). Expression of interneuron markers in the dorsolateral prefrontal cortex of the developing human and in schizophrenia. American Journal of Psychiatry 167, 14791488.Google Scholar
Garey, LJ, Ong, WY, Patel, TS, Kanani, M, Davis, A, Mortimer, AM, Barnes, TRE, Hirsch, SR (1998). Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. Journal of Neurology, Neurosurgery, and Psychiatry 65, 446453.Google Scholar
Georgiev, D, Gonzalez-Burgos, G, Kikuchi, M, Minabe, Y, Lewis, DA, Hashimoto, T (2012). Selective expression of KCNS3 potassium channel alpha-subunit in parvalbumin-ontaining GABA neurons in the human prefrontal cortex. PLoS ONE 7, e43904.Google Scholar
Glantz, LA, Lewis, DA (2000). Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Archives of General Psychiatry 57, 6573.Google Scholar
Glausier, JR, Lewis, DA (2013). Dendritic spine pathology in schizophrenia. Neuroscience 251, 90107.Google Scholar
Guidotti, A, Auta, J, Davis, JM, Gerevini, VD, Dwivedi, Y, Grayson, DR, Impagnatiello, F, Pandey, G, Pesold, C, Sharma, R, Uzunov, D, Costa, E (2000). Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder. Archives of General Psychiatry 57, 10611069.CrossRefGoogle ScholarPubMed
Hashimoto, T, Bazmi, HH, Mirnics, K, Wu, Q, Sampson, AR, Lewis, DA (2008). Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia. American Journal of Psychiatry 165, 479489.Google Scholar
Hashimoto, T, Volk, DW, Eggan, SM, Mirnics, K, Pierri, JN, Sun, Z, Sampson, AR, Lewis, DA (2003). Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. Journal of Neuroscience 23, 63156326.Google Scholar
Horvath, S, Mirnics, K (2015). Schizophrenia as a disorder of molecular pathways. Biological Psychiatry 77, 2228.Google Scholar
Kimoto, S, Zaki, MM, Bazmi, HH, Lewis, DA (2015). Altered markers of cortical gamma-aminobutyric acid neuronal activity in schizophrenia: role of the NARP Gene. JAMA Psychiatry 72, 747756.Google Scholar
Kolluri, N, Sun, Z, Sampson, AR, Lewis, DA (2005). Lamina-specific reductions in dendritic spine density in the prefrontal cortex of subjects with schizophrenia. American Journal of Psychiatry 162, 12001202.Google Scholar
Konopaske, GT, Lange, N, Coyle, JT, Benes, FM (2014). Prefrontal cortical dendritic spine pathology in schizophrenia and bipolar disorder. JAMA Psychiatry 71, 13231331.CrossRefGoogle ScholarPubMed
Liodis, P, Denaxa, M, Grigoriou, M, Akufo-Addo, C, Yanagawa, Y, Pachnis, V (2007). Lhx6 activity is required for the normal migration and specification of cortical interneuron subtypes. Journal of Neuroscience 27, 30783089.Google Scholar
Mellios, N, Huang, HS, Baker, SP, Galdzicka, M, Ginns, E, Akbarian, S (2009). Molecular determinants of dysregulated GABAergic gene expression in the prefrontal cortex of subjects with schizophrenia. Biological Psychiatry 65, 10061014.Google Scholar
Minzenberg, MJ, Firl, AJ, Yoon, JH, Gomes, GC, Reinking, C, Carter, CS (2010). Gamma oscillatory power is impaired during cognitive control independent of medication status in first-episode schizophrenia. Neuropsychopharmacology 35, 25902599.Google Scholar
Morris, HM, Hashimoto, T, Lewis, DA (2008). Alterations in somatostatin mRNA expression in the dorsolateral prefrontal cortex of subjects with schizophrenia or schizoaffective disorder. Cerebral Cortex 18, 15751587.Google Scholar
Neves, G, Shah, MM, Liodis, P, Achimastou, A, Denaxa, M, Roalfe, G, Sesay, A, Walker, MC, Pachnis, V (2013). The LIM homeodomain protein Lhx6 regulates maturation of interneurons and network excitability in the mammalian cortex. Cerebral Cortex 23, 18111823.Google Scholar
Purcell, SM, Wray, NR, Stone, JL, Visscher, PM, O'Donovan, MC, Sullivan, PF, Sklar, P (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748752.Google ScholarPubMed
Ripke, S, Sanders, AR, Kendler, KS, Levinson, DF, Sklar, P, Holmans, PA, Lin, DY, Duan, J, Ophoff, RA, Andreassen, OA, Scolnick, E, Cichon, S, St Clair, D, Corvin, A, Gurling, H, Werge, T, Rujescu, D, Blackwood, DH, Pato, CN, Malhotra, AK, Purcell, S, Dudbridge, F, Neale, BM, Rossin, L, Visscher, PM, Posthuma, D, Ruderfer, DM, Fanous, A, Stefansson, H, Steinberg, S, Mowry, BJ, Golimbet, V, De Hert, M, Jonsson, EG, Bitter, I, Pietilainen, OP, Collier, DA, Tosato, S, Agartz, I, Albus, M, Alexander, M, Amdur, RL, Amin, F, Bass, N, Bergen, SE, Black, DW, Borglum, AD, Brown, MA, Bruggeman, R, Buccola, NG, Byerley, WF, Cahn, W, Cantor, RM, Carr, VJ, Catts, SV, Choudhury, K, Cloninger, CR, Cormican, P, Craddock, N, Danoy, PA, Datta, S, de Haan, L, Demontis, D, Dikeos, D, Djurovic, S, Donnelly, P, Donohoe, G, Duong, L, Dwyer, S, Fink-Jensen, A, Freedman, R, Freimer, NB, Friedl, M, Georgieva, L, Giegling, I, Gill, M, Glenthoj, B, Godard, S, Hamshere, M, Hansen, M, Hansen, T, Hartmann, AM, Henskens, FA, Hougaard, DM, Hultman, CM, Ingason, A, Jablensky, AV, Jakobsen, KD, Jay, M, Jurgens, G, Kahn, RS, Keller, MC, Kenis, G, Kenny, E, Kim, Y, Kirov, GK, Konnerth, H, Konte, B, Krabbendam, L, Krasucki, R, Lasseter, VK, Laurent, C, Lawrence, J, Lencz, T, Lerer, FB, Liang, KY, Lichtenstein, P, Lieberman, JA, Linszen, DH, Lonnqvist, J, Loughland, CM, Maclean, AW, Maher, BS, Maier, W, Mallet, J, Malloy, P, Mattheisen, M, Mattingsdal, M, McGhee, KA, McGrath, JJ, McIntosh, A, McLean, DE, McQuillin, A, Melle, I, Michie, PT, Milanova, V, Morris, DW, Mors, O, Mortensen, PB, Moskvina, V, Muglia, P, Myin-Germeys, I, Nertney, DA, Nestadt, G, Nielsen, J, Nikolov, I, Nordentoft, M, Norton, N, Nothen, MM, O'Dushlaine, CT, Olincy, A, Olsen, L, O'Neill, FA, Orntoft, TF, Owen, MJ, Pantelis, C, Papadimitriou, G, Pato, MT, Peltonen, L, Petursson, H, Pickard, B, Pimm, J, Pulver, AE, Puri, V, Quested, D, Quinn, EM, Rasmussen, HB, Rethelyi, JM, Ribble, R, Rietschel, M, Riley, BP, Ruggeri, M, Schall, U, Schulze, TG, Schwab, SG, Scott, RJ, Shi, J, Sigurdsson, E, Silverman, JM, Spencer, CC, Stefansson, K, Strange, A, Strengman, E, Stroup, TS, Suvisaari, J, Terenius, L, Thirumalai, S, Thygesen, JH, Timm, S, Toncheva, D, van den, OE, van Os, J, van Winkel, R, Veldink, J, Walsh, D, Wang, AG, Wiersma, D, Wildenauer, DB, Williams, HJ, Williams, NM, Wormley, B, Zammit, S, Sullivan, PF, O'Donovan, MC, Daly, MJ, Gejman, PV (2011). Genome-wide association study identifies five new schizophrenia loci. Nature Genetics 43, 969976.Google Scholar
Rowland, LM, Summerfelt, A, Wijtenburg, SA, Du, X, Chiappelli, JJ, Krishna, N, West, J, Muellerklein, F, Kochunov, P, Hong, LE (2016). Frontal Glutamate and gamma-Aminobutyric Acid Levels and Their Associations With Mismatch Negativity and Digit Sequencing Task Performance in Schizophrenia. JAMA Psychiatry 73, 166174.Google Scholar
Sibille, E, Morris, HM, Kota, RS, Lewis, DA (2011). GABA-related transcripts in the dorsolateral prefrontal cortex in mood disorders. International Journal of Neuropsychopharmacology 14, 721734.Google Scholar
Siegel, BI, Sengupta, EJ, Edelson, JR, Lewis, DA, Volk, DW (2014). Elevated viral restriction factor levels in cortical blood vessels in schizophrenia. Biological Psychiatry 76, 160167.CrossRefGoogle ScholarPubMed
Sohal, VS (2012). Insights into cortical oscillations arising from optogenetic studies. Biological Psychiatry 71, 10391045.Google Scholar
Sohal, VS, Zhang, F, Yizhar, O, Deisseroth, K (2009). Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698702.CrossRefGoogle ScholarPubMed
Straub, RE, Lipska, BK, Egan, MF, Goldberg, TE, Callicott, JH, Mayhew, MB, Vakkalanka, RK, Kolachana, BS, Kleinman, JE, Weinberger, DR (2007). Allelic variation in GAD1 (GAD67) is associated with schizophrenia and influences cortical function and gene expression. Molecular Psychiatry 12, 854869.Google Scholar
Vandesompele, J, De Preter, K, Pattyn, F, Poppe, B, Van Roy, N, De Paepe, A, Speleman, F (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3, 34.134.11.Google Scholar
Volk, DW, Austin, MC, Pierri, JN, Sampson, AR, Lewis, DA (2000). Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Archives of General Psychiatry 57, 237245.Google Scholar
Volk, DW, Chitrapu, A, Edelson, JR, Lewis, DA (2015a). Chemokine receptors and cortical interneuron dysfunction in schizophrenia. Schizophrenia Research 167, 1217.Google Scholar
Volk, DW, Chitrapu, A, Edelson, JR, Roman, KM, Moroco, AE, Lewis, DA (2015b). Molecular mechanisms and timing of cortical immune activation in schizophrenia. American Journal of Psychiatry 172, 111211121.Google Scholar
Volk, DW, Edelson, JR, Lewis, DA (2014). Cortical inhibitory neuron disturbances in schizophrenia: role of the ontogenetic transcription factor Lhx6. Schizophrenia Bulletin 40, 10531061.Google Scholar
Volk, DW, Eggan, SM, Lewis, DA (2010). Alterations in metabotropic glutamate receptor 1alpha and regulator of G protein signaling 4 in the prefrontal cortex in schizophrenia. American Journal of Psychiatry 167, 14891498.Google Scholar
Volk, DW, Lewis, DA (2014). Early developmental disturbances of cortical inhibitory neurons: contribution to cognitive deficits in schizophrenia. Schizophrenia Bulletin 40, 952957.Google Scholar
Volk, DW, Lewis, DA (2015). Schizophrenia. In Rosenberg's Molecular and Genetic Basis of Neurological and Psychiatric Disease (ed. Rosenberg, R. N. and Pascal, J. M.), pp. 12931299. Academic Press/Elsevier: Waltham, MA.CrossRefGoogle Scholar
Volk, DW, Matsubara, T, Li, S, Sengupta, EJ, Georgiev, D, Minabe, Y, Sampson, A, Hashimoto, T, Lewis, DA (2012). Deficits in transcriptional regulators of cortical parvalbumin neurons in schizophrenia. American Journal of Psychiatry 169, 10821091.Google Scholar
Volk, DW, Radchenkova, PV, Walker, EM, Sengupta, EJ, Lewis, DA (2011). Cortical opioid markers in schizophrenia and across postnatal development. Cerebral Cortex 22, 12151223.Google Scholar
Volk, DW, Siegel, BI, Verrico, CD, Lewis, DA (2013). Endocannabinoid metabolism in the prefrontal cortex in schizophrenia. Schizophrenia Research 147, 5357.Google Scholar
Wang, KS, Liu, XF, Aragam, N (2010). A genome-wide meta-analysis identifies novel loci associated with schizophrenia and bipolar disorder. Schizophrenia Research 124, 192199.Google Scholar
Ward, JH (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58, 236244.Google Scholar
Woo, TU, Kim, AM, Viscidi, E (2008). Disease-specific alterations in glutamatergic neurotransmission on inhibitory interneurons in the prefrontal cortex in schizophrenia. Brain Research 1218, 267277.Google Scholar
Zanelli, J, Reichenberg, A, Morgan, K, Fearon, P, Kravariti, E, Dazzan, P, Morgan, C, Zanelli, C, Demjaha, A, Jones, PB, Doody, GA, Kapur, S, Murray, RM (2010). Specific and generalized neuropsychological deficits: a comparison of patients with various first-episode psychosis presentations. American Journal of Psychiatry 167, 7885.CrossRefGoogle ScholarPubMed
Zhao, Y, Flandin, P, Long, JE, Cuesta, MD, Westphal, H, Rubenstein, JL (2008). Distinct molecular pathways for development of telencephalic interneuron subtypes revealed through analysis of Lhx6 mutants. Journal of Comparative Neurology 510, 7999.Google Scholar
Supplementary material: PDF

Volk supplementary material

Supplementary Table

Download Volk supplementary material(PDF)
PDF 198.8 KB