Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-16T17:01:00.170Z Has data issue: false hasContentIssue false

Interaction effects of subjective memory impairment and ApoE4 genotype on episodic memory and hippocampal volume

Published online by Cambridge University Press:  02 February 2011

N. Striepens
Affiliation:
Department of Psychiatry, University of Bonn, Bonn, Germany
L. Scheef
Affiliation:
Department of Radiology, University of Bonn, Bonn, Germany
A. Wind
Affiliation:
Department of Psychiatry, University of Bonn, Bonn, Germany
D. Meiberth
Affiliation:
Department of Psychiatry, University of Bonn, Bonn, Germany
J. Popp
Affiliation:
Department of Psychiatry, University of Bonn, Bonn, Germany
A. Spottke
Affiliation:
Department of Psychiatry, University of Bonn, Bonn, Germany Department of Neurology, University of Bonn, Bonn, Germany
H. Kölsch
Affiliation:
Department of Psychiatry, University of Bonn, Bonn, Germany
M. Wagner
Affiliation:
Department of Psychiatry, University of Bonn, Bonn, Germany
F. Jessen*
Affiliation:
Department of Psychiatry, University of Bonn, Bonn, Germany
*
*Address for correspondence: Prof. Dr. med. F. Jessen, Department of Psychiatry, University of Bonn, Bonn, Germany. (Email: Frank.Jessen@ukb.uni-bonn.de)

Abstract

Background

The apolipoprotein E4 allele (ApoE4) is an established genetic risk factor for Alzheimer's disease (AD). However, its effects on cognitive performance and brain structure in healthy individuals are complex. We investigated the effect of ApoE4 on cognitive performance and medial temporal lobe volumetric measures in cognitively unimpaired young elderly with and without subjective memory impairment (SMI), which is an at-risk condition for dementia.

Method

Altogether, 40 individuals with SMI and 62 without were tested on episodic memory and on tasks of speed and executive function. All participants were ApoE genotyped. 21 subjects with SMI and 47 without received additional structural magnetic resonance imaging. Volumetric measures of the hippocampus, the entorhinal cortex and the amygdala were obtained manually.

Results

In the SMI group, ApoE4 carriers performed worse on the episodic memory (p=0.049) and showed smaller left hippocampal volumes (p=0.030). In the individuals without SMI, the ApoE4 carriers performed better on episodic memory (p=0.018) and had larger right hippocampal volumes (p=0.039). The interaction of group (SMI/no SMI) and ApoE genotype was significant for episodic memory (p=0.005) and right and left hippocampal volumes (p=0.042; p=0.035). There were no within-group differences or interaction effects on speed and executive function composite measures or other volumetric measures.

Conclusions

The negative effect of ApoE4 on episodic memory and hippocampal volume in SMI supports SMI as a prodromal condition of AD. The positive effects of ApoE4 in subjects without SMI adds to a number of reports on positive ApoE4 effects in young and very old individuals.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, MM, Landy, KM, Duong, S, Fox-Bosetti, S, Ashford, JW, Murphy, GM, Weiner, M, Taylor, JL (2010). Apolipoprotein E4 influences on episodic recall and brain structures in aging pilots. Neurobiology of Aging 31, 10591063.CrossRefGoogle ScholarPubMed
Agosta, F, Vossel, KA, Miller, BL, Migliaccion, R, Bonasera, SJ, Filippi, M, Boxer, AL, Karydas, A, Possin, KL, Gorno-Tempini, ML (2009). Apolipoprotein E4 is associated with disease-specific effects on brain atrophy in Alzheimer's disease and frontotemporal dementia. Proceedings of the National Academy of Sciences USA 106, 20182022.CrossRefGoogle ScholarPubMed
Bennett, DA, Schneider, JA, Wilson, RS, Bienias, JL, Berry-Kravis, E, Arnold, SE (2005). Amyloid mediates the association of apolipoprotein E4 allele to cognitive function in older people. Journal of Neurology, Neurosurgery and Psychiatry 76, 11941199.CrossRefGoogle ScholarPubMed
Boccardi, M, Sabattoli, F, Testa, C, Beltramello, A, Soininen, H, Frisoni, GB (2004). APOE and modulation of Alzheimer's and frontotemporal dementia. Neuroscience Letters 356, 167170.CrossRefGoogle ScholarPubMed
Bu, G (2009). Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy. Nature Reviews Neuroscience 10, 333344.CrossRefGoogle ScholarPubMed
Carr, DB, Gray, J, Morris, JC (2000). The value of informant versus individual's complaints of memory impairment in early dementia. Neurology 55, 17241726.CrossRefGoogle ScholarPubMed
Carrión-Baralt, JR, Meléndez-Cabrero, J, Schnaider Beeri, M, Sano, M, Silverman, JM (2009). The neuropsychological performance of non-demented Puerto Rican nonagenarians. Dementia and Other Cognitive Disorders 72, 353360.CrossRefGoogle Scholar
Cherbuin, N, Leach, LS, Christensen, H, Anstey, KJ (2007). Neuroimaging and APOE genotype: a systematic qualitative review. Dementia and Other Geriatric Cognitive Disorders 24, 348362.CrossRefGoogle ScholarPubMed
Cosentino, S, Scarmeas, N, Helzner, E, Glymour, MM, Brandt, J, Albert, M, Blacker, D, Stern, Y (2008). ApoE epsilon 4 allele predicts faster cognitive decline in mild Alzheimer disease. Neurology 70, 18421849.CrossRefGoogle ScholarPubMed
Farlow, MR, He, Y, Tekin, S, Xu, J, Lane, R, Charles, HC (2004). Impact of ApoE in mild cognitive impairment. Neurology 63, 18981901.CrossRefGoogle ScholarPubMed
Fleisher, A, Grundman, M, Jack, CR Jr., Petersen, RC, Taylor, C, Kim, HT, Schiller, DH, Bagwell, V, Sencakova, D, Weiner, MF, DeCarli, C, DeKosky, ST, van Dyck, CH, Thal, LJ (2005). Sex apolipoprotein E ε4 status, and hippocampal volume in mild cognitive impairment. Archives of Neurology 62, 953957.CrossRefGoogle ScholarPubMed
Goncharova, I, Dickerson, BC, Stoub, TR, deToledo-Morell, L (2001). MRI of human entorhinal cortex: a reliable protocol for volumetric measurement. Neurobiology of Aging 22, 737745.CrossRefGoogle ScholarPubMed
Harwood, DG, Barker, WW, Ownby, RL, Mullan, M, Duara, R (2004). No association between subjective memory complaints and apolipoprotein E genotype in cognitively intact elderly. International Journal of Geriatric Psychiatry 19, 11311139.CrossRefGoogle ScholarPubMed
Insausti, R, Juottonen, K, Soininen, H, Insausti, AM, Partanen, K, Vainio, P, Laakso, MP, Pitkänen, A (1998). MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. American Journal of Neuroradiology 19, 659671.Google ScholarPubMed
Jessen, F, Feyen, L, Freymann, K, Tepest, R, Maier, W, Heun, R, Schild, HH, Scheef, L (2006). Volume reduction of the entorhinal cortex in subjective memory impairment. Neurobiology of Aging 27, 17511756.CrossRefGoogle ScholarPubMed
Jessen, F, Wiese, B, Bachmann, C, Eifflaender-Gorfer, S, Haller, F, Kölsch, H, Luck, T, Mösch, E, van den Bussche, H, Wagner, M, Wollny, A, Zimmermann, T, Pentzek, M, Riedel-Heller, SG, Romberg, HP, Weyerer, S, Kaduszkiewicz, H, Maier, W, Bickel, H, Cognition and Dementia in Primary Care Patients Study Group (2010). Prediction of dementia by subjective memory impairment: effects of severity and temporal association with cognitive impairment. Archives of General Psychiatry 67, 414422.CrossRefGoogle ScholarPubMed
Jessen, F, Wiese, B, Cvetanovska, G, Fuchs, A, Kaduszkiewicz, H, Kölsch, H, Luck, T, Mösch, E, Pentzek, M, Riedel-Heller, SG, Werle, J, Weyerer, S, Zimmermann, T, Maier, W, Bickel, H (2007). Patterns of subjective memory impairment in the elderly: association with memory performance. Psychological Medicine 37, 17531762.CrossRefGoogle ScholarPubMed
Jonker, C, Geerlings, MI, Schmand, B (2000). Are memory complaints predictive for dementia? A review of clinical and population-based studies. International Journal of Geriatric Psychiatry 15, 983991.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Killiany, RJ, Hyman, BT, Gomez-Isla, T, Moss, MB, Kikinis, R, Jolesz, F, Tanzi, R, Jones, K, Albert, MS (2002). MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology 54, 581587.Google Scholar
Kok, E, Haikonen, S, Luoto, T, Huhtala, H, Goebeler, S, Haapasalo, H, Karhunen, PJ (2009). Apolipoprotein E-dependent accumulation of Alzheimer disease-related lesions begins in middle age. Annals of Neurology 65, 650657.CrossRefGoogle ScholarPubMed
Kornhuber, J, Schmidtke, K, Frölich, L, Perneczky, R, Wolf, S, Hampel, H, Jessen, F, Heuser, I, Peters, O, Weih, M, Jahn, H, Luckhaus, C, Hüll, M, Gertz, HJ, Schörder, J, Pantel, J, Rienhoff, O, Seuchter, SA, Rüther, E, Henn, F, Maier, W, Wiltfang, J (2009). Early and differential diagnosis of dementia and mild cognitive impairment. Dementia and Other Geriatric Cognitive Disorders 27, 404417.CrossRefGoogle ScholarPubMed
Laws, SM, Clarnette, RM, Taddei, K, Martins, G, Paton, A, Hallmayer, J, Almeida, OP, Groth, DM, Gandy, SE, Förstl, H, Martins, RN (2002). APOE-epsilon4 and APOE-491A polymorphisms in individuals with subjective memory loss. Molecular Psychiatry 7, 768775.CrossRefGoogle ScholarPubMed
Lemaitre, H, Crivello, F, Dufouil, C, Grassiot, B, Tzourio, C, Alperovitch, A, Mazoyer, B (2005). No epsilon-4 gene dose effect on hippocampal atrophy in a large MRI database of healthy elderly subjects. Neuroimage 24, 12051213.CrossRefGoogle Scholar
Lind, J, Larson, A, Petersson, J, Ingvar, M, Nilson, LG, Backma, L, Adolfsson, R, Cruts, M, Sieeers, K, van Broeckhoven, C, Nyberg, L (2006). Reduced hippocampal volume in non-demented carriers of apolipoprotein epsilon 4: relation to chronic age and recognition memory. Neuroscience Letters 396, 2327.CrossRefGoogle Scholar
Luciano, M, Gow, AJ, Taylor, MD, Hayward, C, Harris, SE, Campell, H, Porteous, DJ, Starr, JM, Visscher, PM, Deary, IJ (2009). Apolipoprotein E is not related to memory abilities in 70 years of age. Behaviour Genetics 39, 6–14.CrossRefGoogle ScholarPubMed
Mondadori, CR, deQuervain, DJ, Buchmann, A, Mustovic, H, Wollmer, MA, Schmidt, CF, Boesiger, P, Hock, C, Nitsch, RM, Papassotiropoulos, A, Henke, K (2007). Better memory and neural efficiency in young ApoE4 carriers. Cerebral Cortex 17, 19341947.CrossRefGoogle Scholar
Morris, JC, Heyman, A, Mohs, RC, Hughes, JP, van Belle, G, Fillenbaum, G, Mellits, ED, Clark, C (1989). The Consortium to Establish a Registry for Alzheimer's disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer's disease. Neurology 39, 11591165.Google Scholar
Mueller, SG, Weiner, MW (2009). Selective effect of age, ApoE4, and Alzheimer's disease on hippocampal subfields. Hippocampus 19, 558564.CrossRefGoogle ScholarPubMed
Müller, H, Hasse-Sander, I, Horn, R, Helmstadter, C, Elger, CE (1997). Rey Auditory-Verbal Learning Test: structure of a modified German version. Journal of Clinical Psychology 53, 663671.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Petersen, RC (2009). Early diagnosis of Alzheimer's disease: is MCI too late? Current Alzheimer Research 6, 324330.CrossRefGoogle ScholarPubMed
Petersen, RC, Doody, R, Kurz, A, Mohs, RC, Morris, JC, Rabins, PV, Ritchie, K, Rossor, M, Thal, L, Winblad, B (2001 a). Current concepts in mild cognitive impairment. Archives of Neurology 58, 19851992.CrossRefGoogle ScholarPubMed
Petersen, RC, Stevens, JC, Ganguli, M, Tangalos, EG, Cummings, JL, DeKosky, ST (2001 b). Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 56, 11331142.CrossRefGoogle Scholar
Pruessner, JC, Li, LM, Series, W, Pruessner, M, Collins, DL, Kabani, N, Lupien, S, Evans, AC (2000). Volumetry of hippocampus and amygdale with high-resolution MRI and three-dimensional analysis software: minimizing the discrepancies between laboratories. Cerebral Cortex 10, 433442.CrossRefGoogle Scholar
Reisberg, B, Shulman, MB (2009). Commentary on ‘a roadmap for the prevention of dementia II: Leon Thal Symposium 2008’. Subjective cognitive impairment as an antecedent of Alzheimer's dementia policy import. Alzheimer's and Dementia 5, 154156.CrossRefGoogle Scholar
Reisberg, B, Shulman, MB, Torossian, C, Leng, L, Zhu, W (2010). Outcome over seven years of healthy adults with and without subjective cognitive impairment. Alzheimer's and Dementia 6, 1124.CrossRefGoogle ScholarPubMed
Saykin, AJ, Wishart, HA, Rabin, LA, Santulli, RB, Flashman, LA, West, JD, McHugh, TL, Mamourian, AC (2006). Older adults with cognitive complaints show brain atrophy similar to that of amnestic MCI. Neurology 67, 835842.CrossRefGoogle ScholarPubMed
Schultz, MR, Lyons, MJ, Franz, CE, Grant, MD, Boake, C, Jacobson, KC, Xian, H, Schellenberg, GD, Eisen, SA, Kremen, WS (2008). Apolipoprotein E genotype and memory in the sixth decade of life. Neurology 70, 17711777.CrossRefGoogle ScholarPubMed
Small, GW, Chen, ST, Komo, S, Ercoli, L, Bookheimer, S, Miller, K, Lavretsky, H, Saxena, S, Kaplan, A, Dorsey, D, Scott, WK, Saunders, AM, Haines, JL, Roses, AD, Pericak-Vance, MA (1999). Memory self-appraisal in middle-aged and older adults with the apolipoprotein E-4 allele. American Journal of Psychiatry 156, 10351038.CrossRefGoogle ScholarPubMed
Smith, GE, Bohac, DL, Waring, SC, Kokmen, E, Tangalos, EG, Ivnik, RJ, Petersen, RC (1998). Apolipoprotein E genotype influences cognitive ‘phenotype’ in patients with Alzheimer's disease but not in healthy control subjects. Neurology 50, 355362.CrossRefGoogle ScholarPubMed
Strauss, E, Spreen, O (1990). A comparison of the Rey and Taylor figures. Archives of Clinical Neuropsychology 5, 417420.CrossRefGoogle ScholarPubMed
Striepens, N, Scheef, L, Wind, A, Popp, J, Spottke, A, Cooper-Mahkorn, D, Suliman, H, Wagner, M, Schild, HH, Jessen, F (2010). Volume loss of the medial temporal lobe structures in subjective memory impairment. Dementia and Other Cognitive Disorders 29, 7581.CrossRefGoogle ScholarPubMed
Tupler, LA, Krishnan, KR, Greenberg, DL, Marcovina, SM, Payne, ME, Macfall, JR, Charles, HC, Doraiswamy, PM (2006). Predicting memory decline in normal elderly: genetics, MRI and cognitive reserve. Neurobiology of Aging 28, 16441656.CrossRefGoogle ScholarPubMed
van der Flier, WM, van der Vlies, AE, Weverling-Rijnsburger, AW, de Boer, NL, Admiraal-Behloul, F, Bollern, EL, Westendorp, RG, van Buchem, MA, Middelkoop, HA (2005). MRI measures and progression of cognitive decline in non-demented elderly attending a memory clinic. International Journal of Geriatric Psychiatry 20, 10601066.CrossRefGoogle Scholar
Wang, PN, Liu, HC, Lin, KN (2006). The MCI study in Taiwan. Acta Neurologica Taiwanica 15, 6668.Google ScholarPubMed
Wang, P-N, Liu, H-C, Ling, J-F, Lin, K-N, Wu, Z-A (2009). Accelerated hippocampal atrophy rates in stable and progressive amnestic mild cognitive impairment. Psychiatry Research 171, 221231.CrossRefGoogle ScholarPubMed
Winblad, B, Palmer, K, Kivipelto, M, Jelic, V, Fratiglioni, L, Wahlund, LO, Nordberg, A, Bäckman, L, Albert, M, Almkvist, O, Arai, H, Basun, H, Blennow, K, deLeon, M, DeCarli, C, Erkinjuntti, T, Giacobini, E, Graff, C, Hardy, J, Jack, C, Jorm, A, Ritchie, K, van Duijn, C, Visser, P, Petersen, RC (2004). Mild cognitive impairment – beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. Journal of Internal Medicine 256, 240246.CrossRefGoogle Scholar
Wittchen, HU, Zhao, S, Abelson, JM, Abelson, JL, Kessler, RC (1996). Reliability and procedural validity of UM-CIDI SMI-II-R phobic disorders. Psychological Medicine 26, 11691177.CrossRefGoogle ScholarPubMed
Zhong, N, Weisgraber, KH (2009). Understanding the basis for the association of apoE4 with Alzheimer's disease: opening the door for therapeutic approaches. Current Alzheimer Research 6, 415418.CrossRefGoogle ScholarPubMed