Skip to main content Accessibility help
×
Home

Population-level effective coverage of adolescent weekly iron and folic acid supplementation is low in rural West Bengal, India

Published online by Cambridge University Press:  11 June 2020

Christopher R Sudfeld
Affiliation:
Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, MA02115, USA Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA02115, USA
Rajesh Kumar Rai
Affiliation:
Society for Health and Demographic Surveillance, Suri, West Bengal, India
Anamitra Barik
Affiliation:
Society for Health and Demographic Surveillance, Suri, West Bengal, India
Joseph J Valadez
Affiliation:
Department of Public International Health, Liverpool School of Tropical Medicine, Liverpool, UK
Wafaie W Fawzi
Affiliation:
Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, MA02115, USA Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA02115, USA Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
Corresponding
E-mail address:

Abstract

Objective:

To assess the coverage of the adolescent weekly iron and folic acid supplementation (WIFS) programme in rural West Bengal, India.

Design:

We conducted a population-based cross-sectional survey of intended WIFS programme beneficiaries (in-school adolescent girls and boys and out-of-school adolescent girls).

Setting:

Birbhum Health and Demographic Surveillance System.

Participants:

A total of 4448 adolescents 10–19 years of age participated in the study.

Results:

The percentage of adolescents who reported taking four WIFS tablets during the last month as intended by the national programme was 9·4 % among in-school girls, 7·1 % for in-school boys and 2·3 % for out-of-school girls. The low effective coverage was due to the combination of large deficits in WIFS provision and poor adherence. A large proportion of adolescents reported they were not provided any WIFS tablets in the last month: 61·7 % of in-school girls, 73·3 % of in-school boys and 97·1 % of out-of-school girls. In terms of adherence, only 41·6 % of in-school girls, 38·1 % of in-school boys and 47·4 % of out-of-school girls reported that they consumed all WIFS tablets they received. Counselling from teachers, administrators and school staff was the primary reason adolescents reported taking WIFS tablets, whereas the major reasons for non-adherence were lack of perceived benefit, peer suggestion not to take WIFS and a reported history of side effects.

Conclusions:

The effective coverage of the WIFS programme for in-school adolescents and out-of-school adolescent girls is low in rural Birbhum. Integrated supply- and demand-side strategies appear to be necessary to increase the effective coverage and potential benefits of the WIFS programme.

Type
Short Communication
Copyright
© The Authors 2020

Access options

Get access to the full version of this content by using one of the access options below.

References

Beard, JL (2000) Iron requirements in adolescent females. J Nutr 130, 440S442S.CrossRefGoogle ScholarPubMed
World Health Organization (2011) Prevention of Iron Deficiency Anaemia in Adolescents. New Delhi, India: WHO Regional Office for South-East Asia.Google Scholar
Pitkin, RM (2007) Folate and neural tube defects. Am J Clin Nutr 85, 285S288S.CrossRefGoogle ScholarPubMed
Aslinia, F, Mazza, JJ & Yale, SH (2006) Megaloblastic anemia and other causes of macrocytosis. Clin Med Res 4, 236241.CrossRefGoogle ScholarPubMed
International Institute for Population Sciences and ICF (2017) National Family Health Survey (NFHS-4), 2015–16. India: IIPS Mumbai.Google Scholar
Balarajan, Y, Ramakrishnan, U, Ozaltin, Eet al. (2011) Anaemia in low-income and middle-income countries. Lancet 378, 21232135.CrossRefGoogle ScholarPubMed
More, S, Shivkumar, VB, Gangane, Net al. (2013) Effects of iron deficiency on cognitive function in school going adolescent females in rural area of central India. Anemia 2013, 819136.CrossRefGoogle ScholarPubMed
Ministry of Health and Family Welfare (2012) Operational Framework Weekly Iron and Folic Acid Supplementation Programme for Adolescents. New Delhi: Government of India.Google Scholar
Aguayo, VM, Paintal, K & Singh, G (2013) The adolescent girls’ anaemia control programme: a decade of programming experience to break the inter-generational cycle of malnutrition in India. Public Health Nutr 16, 16671676.CrossRefGoogle ScholarPubMed
Sachdev, Y & Dasgupta, J (2001) Integrated child development services (ICDS) scheme. Med J Armed Forces India 57, 139143.CrossRefGoogle ScholarPubMed
Malhotra, S, Yadav, K, Kusuma, YSet al. (2015) Challenges in scaling up successful public health interventions: lessons learnt from resistance to a nationwide roll-out of the weekly iron-folic acid supplementation programme for adolescents in India. Natl Med J India 28, 8185.Google ScholarPubMed
Dhikale, P, Suguna, E, Thamizharasi, Aet al. (2015) Evaluation of weekly iron and folic acid supplementation program for adolescents in rural Pondicherry, India. Int J Med Sci Public Health 4, 13601365.CrossRefGoogle Scholar
Ghosh, S, Barik, A, Majumder, Set al. (2015) Health & demographic surveillance system profile: the Birbhum population project (Birbhum HDSS). Int J Epidemiol 44, 98107.CrossRefGoogle Scholar
Vyas, S & Kumaranayake, L (2006) Constructing socio-economic status indices: how to use principal components analysis. Health Policy Plan 21, 459468.CrossRefGoogle ScholarPubMed
Spiegelman, D & Hertzmark, E (2005) Easy SAS calculations for risk or prevalence ratios and differences. Am J Epidemiol 162, 199200.CrossRefGoogle ScholarPubMed
Sarada, A & Thilak, S (2016) Evaluation of weekly iron and folic acid supplementation programme for adolescents in rural schools of Kannur, North Kerala, India: a cross-sectional study. Int J Med Sci Public Health 5, 22592263.Google Scholar
Priya, HS DS, Bahurupi, YA, Narayan, KAet al. (2016) Factors influencing weekly IFA supplementation programme (WIFS) among school children: where to focus our attention? IJCMR 3, 10751079.Google Scholar
Vir, SC, Singh, N, Nigam, AKet al. (2008) Weekly iron and folic acid supplementation with counseling reduces anemia in adolescent girls: a large-scale effectiveness study in Uttar Pradesh, India. Food Nutr Bull 29, 186194.CrossRefGoogle ScholarPubMed

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 13
Total number of PDF views: 45 *
View data table for this chart

* Views captured on Cambridge Core between 11th June 2020 - 14th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-xbf5p Total loading time: 1.49 Render date: 2021-01-14T14:24:00.439Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Thu Jan 14 2021 13:49:06 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Population-level effective coverage of adolescent weekly iron and folic acid supplementation is low in rural West Bengal, India
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Population-level effective coverage of adolescent weekly iron and folic acid supplementation is low in rural West Bengal, India
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Population-level effective coverage of adolescent weekly iron and folic acid supplementation is low in rural West Bengal, India
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *