Skip to main content Accessibility help
×
Home

Demographic and socio-economic predictors of diet quality among adults in Bosnia and Herzegovina

  • Selma Gicevic (a1), Audrey J Gaskins (a1) (a2), Teresa T Fung (a1) (a3), Bernard Rosner (a2) (a4), Edin Sabanovic (a5), Jelena Milesevic (a6), Agnes Kadvan (a6), Emir Kremic (a7) and Walter Willett (a1) (a2) (a8)...

Abstract

Objective:

To evaluate associations of demographic and socio-economic factors with diet quality among population subgroups in Bosnia and Herzegovina (B&H).

Design:

A cross-sectional analysis of 2017 B&H dietary survey data. Diet quality was assessed by the Prime Diet Quality Score (PDQS) utilizing data from two non-consecutive 24 h diet recalls. Socio-economic variables were extracted from the 2015 B&H Household Budget Survey. Homogeneity of means across population subgroups was evaluated using multivariable regression.

Setting:

B&H population survey.

Participants:

A population-based sample of 853 adults.

Results:

The mean PDQS was 15·8 (range 7–28 out of a possible 42 points). In general, Bosnian adults had low PDQS due to high intakes of refined grains, high-fat dairy and processed meats, and low intakes of whole grains, nuts and fish. The PDQS was significantly higher (P < 0·0001) among older individuals (17·0) compared with those in the youngest group (14·5), among individuals living in the central and northern regions (16·5) compared with those living in the south (15·1; P < 0·0001), and among people who are married/cohabitating (16·1) v. single (14·8; P = 0·02). In energy-adjusted models, socio-economic status (P = 0·04) and tertiles of household spending (P = 0·002) were inversely associated with the PDQS.

Conclusions:

Diet quality in this population was low. Young and middle-aged individuals, singles and those living in the south had significantly lower quality diets compared with other subgroups. Public health action is needed to promote higher consumption of whole grains, nuts and fish, and a higher variety of fruits and vegetables.

Copyright

Corresponding author

*Corresponding author: Email selma.gicevic@mail.harvard.edu

References

Hide All
1. Wang, DD, Leung, CW, Li, Y et al. (2014) Trends in dietary quality among adults in the United States, 1999 through 2010. JAMA Intern Med 174, 15871595.
2. Popkin, BM, Siega-Riz, AM & Haines, PS (1996) A comparison of dietary trends among racial and socioeconomic groups in the United States. N Engl J Med 335, 716720.
3. Beghin, L, Dauchet, L, De Vriendt, T et al. (2014) Influence of parental socio-economic status on diet quality of European adolescents: results from the HELENA study. Br J Nutr 111, 13031312.
4. Popkin, BM (2001) The nutrition transition and obesity in the developing world. J Nutr 131, issue 3, 871S873S.
5. Popkin, BM (2004) The nutrition transition: an overview of world patterns of change. Nutr Rev 62, S140S143.
6. Popkin, BM (2014) Synthesis and implications: China’s nutrition transition in the context of changes across other low- and middle-income countries. Obes Rev 15, Suppl. 1, 6067.
7. Mayen, AL, Marques-Vidal, P, Paccaud, F et al. (2014) Socioeconomic determinants of dietary patterns in low- and middle-income countries: a systematic review. Am J Clin Nutr 100, 15201531.
8. World Bank (2004) Bosnia and Herzegovina: Post-Conflict Reconstruction and the Transition to a Market Economy. Washington, DC: World Bank.
9. Stiblar, F (2013) Economic Growth and Development in Post Yugoslav Countries. Global Europe Program. Washington, DC: Wilson Center.
10. Food and Agriculture Organization of the United Nations (2015) The Fisheries and Aquaculture Sector in Bosnia and Herzegovina: Preparation of IPARD Forest and Fisheries Sector Reviews in Bosnia and Herzegovina. Budapest: FAO Regional Office for Europe and Central Asia.
11. Farrugio, H & Soldo, A (2014) Status and Conservation of Fisheries in the Adriatic Sea. Draft internal report for the purposes of the Mediterranean Regional Workshop to Facilitate the Description of Ecologically or Biologically Significant Marine Areas, Malaga, Spain, 7–11 April 2014. United Nations Environment Programme, Mediterranean Action Plan and Regional Activity Centre for Specially Protected Areas.
12. World Health Organization (2015) Bosnia and Herzegovina: WHO Statistical Profile 2012. Geneva: WHO.
13. Public Health Institute FB&H (2012) Health Population Survey in the Federation of Bosnia and Herzegovina. Sarajevo: Public Health Institute FB&H.
14. Buzina, R, Suboticanec, K & Saric, M (1991) Diet patterns and health problems: diet in southern Europe. Ann Nutr Metab 35, Suppl. 1, 3240.
15. Buzina, R, Ferber, E, Keys, A et al. (1964) Diets of rural families and heads of families in two regions of Yugoslavia. Voeding 25, 629639.
16. Jonsson, IM, Wallin, AM, Hallberg, LR et al. (2002) Choice of food and food traditions in pre-war Bosnia-Herzegovina: focus group interviews with immigrant women in Sweden. Ethn Health 7, 149161.
17. Agency for Statistics of Bosnia and Herzegovina (2015) Bosnia and Herzegovina Household Budget Survey. http://www.bhas.ba/ankete/TB_HBS%202015_SR.pdf (accessed July 2019).
18. Merten, C, Ferrari, P, Banner, M et al. (2011) Methodological characteristics of the national dietary surveys carried out in the European Union as included in the European Food Safety Authority (EFSA) Comprehensive European Food Consumption Database. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28, 975995.
19. Hagenaars, A, de Vos, K & Zaidi, MA (1994) Poverty Statistics in the Late 1980s: Research Based on Micro-data. Luxembourg: Office for Official Publications of the European Communities.
20. Gurinovic, M, Milesevic, J, Kadvan, A et al. (2016) Establishment and advances in the online Serbian food and recipe data base harmonized with EuroFIR standards. Food Chem 193, 3038.
21. Nikolić, M, Milešević, J, Zeković, M et al. (2018) The development and validation of food atlas for portion size estimation in the Balkan region. Front Nutr 5, 78.
22. Gurinović, M, Milešević, J, Kadvan, A et al. (2018) Development, features and application of DIET ASSESS & PLAN (DAP) software in supporting public health nutrition research in Central Eastern European Countries (CEEC). Food Chem 238, 186194.
23. Fung, TT, Isanaka, S, Hu, FB et al. (2018) International food group-based diet quality and risk of coronary heart disease in men and women. Am J Clin Nutr 107, 120129.
24. Gicevic, S, Gaskins, AJ, Fung, TT et al. (2018) Evaluating pre-pregnancy dietary diversity vs. dietary quality scores as predictors of gestational diabetes and hypertensive disorders of pregnancy. PLoS One 13, e0195103.
25. Gicevic, S, Gaskins, AJ, Fung, TT et al. (2019) Fueling an epidemic of non-communicable disease in the Balkans: a nutritional survey of Bosnian adults. Int J Public Health 64, 873885.
26. Gicevic, S, Kremic, E, Fung, TT et al. (2019) Feasibility and sustainability of dietary surveillance, Bosnia and Herzegovina. Bull World Health Organ 97, 349357.
27. Rosner, B (1983) Percentage points for a generalized ESD many-outlier procedure. Technometrics 25, 165172.
28. Willett, WC (2012) Dietary fats and coronary heart disease. J Intern Med 272, 1324.
29. Willett, WC & Stampfer, MJ (2013) Current evidence on healthy eating. Annu Rev Public Health 34, 7795.
30. Tur, JA, Romaguera, D & Pons, A (2004) Food consumption patterns in a Mediterranean region: does the Mediterranean diet still exist? Ann Nutr Metab 48, 193201.
31. Carnevale, AP, Rose, SJ & Cheah, B (2015) The College Payoff: Education, Occupations, and Lifetime Earnings. Washington, DC: Georgetown University Center on Education and the Workforce.
32. Boshara, R, Emmons, WR & Noeth, B (2015) The demographics of wealth: how age, education and race separate thrivers from strugglers in today’s economy. Essay No. 2: The role of education. Demogr Wealth issue 2, 128.
33. Sorensen, JS (2005) War as social transformation: wealth, class, power and an illiberal economy in Serbia. Civil Wars 6, 5582.
34. De Haen, H, Stamoulis, K, Shetty, P et al. (2004) The world food economy in the twenty-first century: challenges for international co-operation. Dev Policy Rev 21, 683696.
35. Monsivais, P, McLain, J & Drewnowski, A (2010) The rising disparity in the price of healthful foods: 2004–2008. Food Policy 35, 514520.
36. Lee, S, Cho, E, Grodstein, F et al. (2005) Effects of marital transitions on changes in dietary and other health behaviours in US women. Int J Epidemiol 34, 6978.
37. Eng, PM, Kawachi, I, Fitzmaurice, G et al. (2005) Effects of marital transitions on changes in dietary and other health behaviours in US male health professionals. J Epidemiol Community Health 59, 5662.
38. da Rocha Leal, FM, de Oliveira, BMPM & Pereira, SSR (2011) Relationship between cooking habits and skills and Mediterranean diet in a sample of Portuguese adolescents. Perspect Public Health 131, 283287.
39. Willett, WC (2012) Nutritional Epidemiology, 3rd ed. New York: Oxford University Press.
40. National Institute of Diabetes and Digestive and Kidney Diseases (2016) Diabetes diet, eating, & physical activity. https://www.niddk.nih.gov/health-information/diabetes/overview/diet-eating-physical-activity (accessed July 2019).
41. World Health Organization (2000) Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation. WHO Technical Report Series no. 894. Geneva: WHO.
42. World Health Organization & Food and Agriculture Organization of the United Nations (2004) Vitamin and Mineral Requirements in Human Nutrition. Report of a Joint FAO/WHO Expert Consultation, 2nd ed. Geneva: WHO.
43. Food and Agriculture Organization of the United Nations (2010) Fats and Fatty Acids in Human Nutrition. Report of an Expert Consultation. FAO Food and Nutrition Paper no. 91. Rome: FAO.
44. World Health Organization (2012) Guideline: Sodium Intake for Adults and Children. Geneva: WHO.

Keywords

Type Description Title
WORD
Supplementary materials

Gicevic et al. supplementary material
Tables S1-S3

 Word (136 KB)
136 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed