Skip to main content Accessibility help
×
×
Home

Sources of variation in nutrient intakes among men in Shanghai, China

  • Hui Cai (a1), Gong Yang (a1), Yong-Bing Xiang (a2), James R Hebert (a3), Da-Ke Liu (a2), Wei Zheng (a1) and Xiao-Ou Shu (a1)...

Abstract

Background and objective

Random errors, from any source, will attenuate epidemiological risk estimates. Before we launched the Shanghai Men's Health Study (SMHS), a large population-based cohort study investigating the diet–cancer association among Chinese men, a dietary calibration study was conducted among 96 men aged 40–75 years (mean age 56.5 years), with biweekly 24-hour dietary recalls (24HDRs) implemented over a 1-year period. Data from this study were analysed to evaluate the nature and magnitude of variances for intake of 26 nutrients among SMHS participants, to compare variance ratios of 26 nutrients among Chinese men and women and individuals in other studies, and to estimate the number of 24HDRs required for future dietary calibration studies in similar populations.

Design

Ninety-six healthy, free-living men in Shanghai were administered biweekly 24HDR interviews 24 times over a 1-year period. To assess between-individual and within-individual contributions to variance, a mixed effects model was fitted and ratios of within-individual to between-individual dietary intake variances were computed.

Setting

Shanghai, China.

Results

In agreement with reports from studies conducted in the USA and many other countries, we found that within-individual variances were usually larger than between-individual variances in dietary intake for all nutrients. The sum of all other variation (e.g. weekday and weekend, seasonal, interviewer) accounted for less than 5% of total variation. Ratios of within- to between-individual variances (for log-transformed data) ranged from 1.25 for carbohydrate intake to near 8 for δ-tocopherol intake.

Conclusions

The results of this study suggest that among middle-aged and elderly Chinese men in Shanghai, within- and between-individual variation account for more than 95% of the total variation for 26 nutrients. Further dietary validation studies in the same population could be adequately carried out with only 12 days of dietary recalls, if 100 participants were enrolled.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Sources of variation in nutrient intakes among men in Shanghai, China
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Sources of variation in nutrient intakes among men in Shanghai, China
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Sources of variation in nutrient intakes among men in Shanghai, China
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Email xiao-ou.shu@vanderbilt.edu

References

Hide All
1Shikany, JM, White, GL Jr. Dietary guidelines for chronic disease prevention. Southern Medical Journal 2000; 93: 1138–51.
2Willett, WC. Diet and cancer: one view at the start of the millennium. Cancer Epidemiology, Biomarkers & Prevention 2001; 10: 38.
3Bingham, SA, Gill, C, Welch, A, Day, K, Cassidy, A, Khaw, KT, et al. Comparison of dietary assessment methods in nutritional epidemiology; weighed records v. 24h recalls, food frequency questionnaires and estimated-diet records. British Journal of Nutrition 1994; 72: 619–43.
4Subar, AF, Thompson, FE, Kipnis, V. Subar et al. respond to ‘A further look at dietary questionnaire validation’ and ‘Another perspective on food frequency questionnaires’. American Journal of Epidemiology 2001; 154: 1105–6.
5Hebert, JR, Miller, DR. Methodologic considerations for investigating the diet–cancer link. American Journal of Clinical Nutrition 1988; 47: 1068–77.
6Hebert, JR, Clemow, L, Pbert, L, Ockene, IS, Ockene, JK. Social desirability bias in dietary self-report may compromise the validity of dietary intake measures. International Journal of Epidemiology 1995; 24: 389–98.
7Willett, W. Nutritional Epidemiology. 2nd ed. New York: Oxford University Press, 1998.
8Stram, DO, Hankin, JH, Wilkens, LR, Pike, MC, Monroe, KR, Park, S, et al. Calibration of the dietary questionnaire for a multiethnic cohort in Hawaii and Los Angeles. American Journal of Epidemiology 2000; 151: 358–70.
9Beaton, GH, Milner, J, McGuire, V, Feather, TE, Little, JA. Source of variance in 24-hour dietary recall data: implications for nutrition study design and interpretation. Carbohydrate sources, vitamins, and minerals. American Journal of Clinical Nutrition 1983; 37: 986–95.
10Hunt, WC, Leonard, AG, Garry, PJ, Goodwin, JS. Components of variance in dietary data for an elderly population. Nutrition Research 1983; 3: 433–44.
11Sempos, CT, Johnson, NE, Smith, EL, Gilligan, C. Effects of intraindividual and interindividual variation in repeated dietary records. American Journal of Epidemiology 1985; 121: 120–30.
12Hebert, JR, Hurley, TG, Chiraboga, DE, Barone, J. A comparison of selected nutrient intakes derived from three diet assessment methods used in a low-fat maintenance trial. Public Health Nutrition 1988; 1: 207–14.
13Ziegler, RG, Wilcox, HB, Mason, TJ, Bill, JS, Virgo, PW. Seasonal variation in intake of carotenoids and vegetables and fruits among white men in New Jersey. American Journal of Clinical Nutrition 1987; 45: 107–14.
14Liu, K. Consideration of and compensation of intra-individual variability in nutrient intakes. In: Kohlmeier, L, Helsing, E, eds. Epidemiology, Nutrition and Health. London/Niigate, Japan: Smith-Gordon/Nishimura, 1989.
15Tarasuk, V, Beaton, GH. The nature and individuality of within-subject variation in energy intake. American Journal of Clinical Nutrition 1991; 54: 464–70.
16Hebert, JR, Gupta, PC, Mehta, H, Ebbeling, CB, Bhonsle, RR, Varghese, F. Sources of variability in dietary intake in two distinct regions of rural India: implications for nutrition study design and interpretation. European Journal of Clinical Nutrition 2000; 54: 479–86.
17Cai, H, Shu, XO, Hebert, JR, Jin, F, Yang, G, Liu, DK, et al. Variation in nutrient intakes among women in Shanghai, China. European Journal of Clinical Nutrition 2004; 58: 1604–11.
18Shu, OX, Yang, G, Jin, F, Liu, DK, Kushi, L, Wen, WQ, et al. Validity and reproducibility of the food frequency questionnaire used in the Shanghai Women's Health Study. European Journal of Clinical Nutrition 2004; 58: 1723.
19Wang, GY, Shen, ZP, ed. Chinese Food Composition Table. Beijing: People's Health Publishing House, 1991.
20Liu, K, Stamler, J, Dyer, A, McKeever, J, McKeever, P. Statistical methods to assess and minimize the role of intra-individual variability in obscuring the relationship between dietary lipids and serum cholesterol. Journal of Chronic Disease 1978; 31: 399418.
21McGee, D, Rhoads, G, Hankin, J, Yano, K, Tillotson, J. Within-person variability of nutrient intake in a group of Hawaiian men of Japanese ancestry. American Journal of Clinical Nutrition 1982; 36: 657–63.
22Hartman, AM, Brown, CC, Palmgrem, J, Pietinen, P, Verkasalo, M, Myer, D, et al. Variability in nutrient and food intakes among older middle-aged men. American Journal of Epidemiology 1990; 132: 9991012.
23Nelson, M, Black, AE, Morns, JA, Cole, TJ. Between- and within- subject variation in nutrient intake from infancy to old age: estimating the number of days required to rank dietary intakes with desired precision. American Journal of Clinical Nutrition 1989; 50: 155–67.
24Beaton, GH, Milner, J, Corey, P, McGuire, V, Cousins, M, Stewart, E, et al. Source of variance in 24-hour dietary recall data: implications for nutrition study design and interpretation. American Journal of Clinical Nutrition 1979; 32: 2546–9.
25Ogawa, K, Tsubono, Y, Nishino, Y, Watanabe, Y, Ohkubo, T, Watanabe, T, et al. Inter- and Intra-individual variation of food and nutrient consumption in a rural Japanese population. European Journal of Clinical Nutrition 1999; 52: 781–5.
26McAvay, G, Rodin, J. Interindividual and intraindividual variation in repeated measures of 24-hour dietary recall in the elderly. Appetite 1998; 11: 97110.
27Oh, SY, Hong, MH. Within- and between-person variation of nutrient intakes of older people in Korea. European Journal of Clinical Nutrition 1999; 53: 625–9.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Public Health Nutrition
  • ISSN: 1368-9800
  • EISSN: 1475-2727
  • URL: /core/journals/public-health-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed