Skip to main content Accessibility help
×
Home

Validation of self-reported figural drawing scales against anthropometric measurements in adults

  • Julia Dratva (a1) (a2), Randi Bertelsen (a3), Christer Janson (a4), Ane Johannessen (a3) (a5), Bryndis Benediktsdóttir (a6), Lennart Bråbäck (a7), Shyamali C Dharmage (a8), Bertil Forsberg (a7), Thorarinn Gislason (a6), Debbie Jarvis (a9), Rain Jogi (a10) (a11), Eva Lindberg (a4), Dan Norback (a4), Ernst Omenaas (a5), Trude D Skorge (a3), Torben Sigsgaard (a12), Kjell Toren (a13), Marie Waatevik (a5), Gundula Wieslander (a4), Vivi Schlünssen (a12), Cecilie Svanes (a3) (a14) and Francisco Gomez Real (a5) (a15)...

Abstract

Objective

The aim of the present study was to validate figural drawing scales depicting extremely lean to extremely obese subjects to obtain proxies for BMI and waist circumference in postal surveys.

Design

Reported figural scales and anthropometric data from a large population-based postal survey were validated with measured anthropometric data from the same individuals by means of receiver-operating characteristic curves and a BMI prediction model.

Setting

Adult participants in a Scandinavian cohort study first recruited in 1990 and followed up twice since.

Subjects

Individuals aged 38–66 years with complete data for BMI (n 1580) and waist circumference (n 1017).

Results

Median BMI and waist circumference increased exponentially with increasing figural scales. Receiver-operating characteristic curve analyses showed a high predictive ability to identify individuals with BMI > 25·0 kg/m2 in both sexes. The optimal figural scales for identifying overweight or obese individuals with a correct detection rate were 4 and 5 in women, and 5 and 6 in men, respectively. The prediction model explained 74 % of the variance among women and 62 % among men. Predicted BMI differed only marginally from objectively measured BMI.

Conclusions

Figural drawing scales explained a large part of the anthropometric variance in this population and showed a high predictive ability for identifying overweight/obese subjects. These figural scales can be used with confidence as proxies of BMI and waist circumference in settings where objective measures are not feasible.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Validation of self-reported figural drawing scales against anthropometric measurements in adults
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Validation of self-reported figural drawing scales against anthropometric measurements in adults
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Validation of self-reported figural drawing scales against anthropometric measurements in adults
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Email julia.dratva@unibas.ch

Footnotes

Hide All

C Svanes and FG Real share last authorship.

Footnotes

References

Hide All
1. Seidell, JC, Kahn, HS, Williamson, DF et al. (2001) Report from a Centers for Disease Control and Prevention Workshop on use of adult anthropometry for public health and primary health care. Am J Clin Nutr 73, 123126.
2. Ali, Z & Ulrik, CS (2013) Obesity and asthma: a coincidence or a causal relationship? A systematic review. Respir Med 107, 12871300.
3. Beuther, DA, Weiss, ST & Sutherland, ER (2006) Obesity and asthma. Am J Respir Crit Care Med 174, 112119.
4. Fantuzzi, G (2005) Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 115, 911919.
5. Canoy, D, Luben, R, Welch, A et al. (2004) Abdominal obesity and respiratory function in men and women in the EPIC-Norfolk Study, United Kingdom. Am J Epidemiol 159, 11401149.
6. Leone, N, Courbon, D, Thomas, F et al. (2009) Lung function impairment and metabolic syndrome. Am J Respir Crit Care Med 179, 509516.
7. Rastogi, D, Canfield, SM, Andrade, A et al. (2012) Obesity-associated asthma in children: a distinct entity. Chest 141, 895905.
8. Jaffrin, MY (2009) Body composition determination by bioimpedance: an update. Curr Opin Clin Nutr Metab Care 12, 482486.
9. Sorensen, TI & Stunkard, AJ (1993) Does obesity run in families because of genes? An adoption study using silhouettes as a measure of obesity. Acta Psychiatr Scand Suppl 370, 6772.
10. Romieu, I, Escamilla-Núñez, MC, Sánchez-Zamorano, LM et al. (2012) The association between body shape silhouette and dietary pattern among Mexican women. Public Health Nutr 15, 116125.
11. Tehard, B, Liere, MJV, Nougué, CC et al. (2002) Anthropometric measurements and body silhouette of women: validity and perception. J Am Diet Assoc 102, 17791784.
12. Munoz-Cachon, MJ, Salces, I, Arroyo, M et al. (2009) Overweight and obesity: prediction by silhouettes in young adults. Obesity (Silver Spring) 17, 545549.
13. Kabir, Y, Zafar, TA & Waslien, C (2013) Relationship between perceived body image and recorded body mass index among Kuwaiti female university students. Women Health 53, 693705.
14. Leonhard, ML & Barry, NJ (1998) Body image and obesity: effects of gender and weight on perceptual measures of body image. Addict Behav 23, 3134.
15. Burney, PG, Luczynska, C, Chinn, S et al. (1994) The European Community Respiratory Health Survey. Eur Respir J 7, 954960.
16. Johannessen, A, Verlato, G, Benediktsdottir, B et al. (2014) Longterm follow-up in European respiratory health studies – patterns and implications. BMC Pulm Med 14, 63.
17. World Health Organization (2008) Waist Circumference and Waist–Hip Ratio: Report of a WHO Expert Consultation. Geneva: WHO, Department of Nutrition for Health and Development.
18. Bulik, CM, Wade, TD, Heath, AC et al. (2001) Relating body mass index to figural stimuli: population-based normative data for Caucasians. Int J Obes Relat Metab Disord 25, 15171524.
19. Fawcett, T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27, 861874.
20. Burnham, KP & Anderson, DR (2004) Multimodel inference – understanding AIC and BIC in model selection. Sociol Method Res 33, 261304.
21. Fitzgibbon, ML, Blackman, LR & Avellone, ME (2000) The relationship between body image discrepancy and body mass index across ethnic groups. Obes Res 8, 582589.
22. Madrigal, H, Sanchez-Villegas, A, Martinez-Gonzalez, MA et al. (2000) Underestimation of body mass index through perceived body image as compared to self-reported body mass index in the European Union. Public Health 114, 468473.
23. Martinez, JA, Kearney, JM, Kafatos, A et al. (1999) Variables independently associated with self-reported obesity in the European Union. Public Health Nutr 2, 125133.
24. Kaufer-Horwitz, M, Martinez, J, Goti-Rodriguez, LM et al. (2006) Association between measured BMI and self-perceived body size in Mexican adults. Ann Hum Biol 33, 536545.
25. Kronenfeld, LW, Reba-Harrelson, L, Von Holle, A et al. (2010) Ethnic and racial differences in body size perception and satisfaction. Body Image 7, 131136.
26. Mciza, Z, Goedecke, JH, Steyn, NP et al. (2005) Development and validation of instruments measuring body image and body weight dissatisfaction in South African mothers and their daughters. Public Health Nutr 8, 509519.
27. Paeratakul, S, White, MA, Williamson, DA et al. (2002) Sex, race/ethnicity, socioeconomic status, and BMI in relation to self-perception of overweight. Obes Res 10, 345350.
28. Torres-McGehee, TM, Monsma, EV, Dompier, TP et al. (2012) Eating disorder risk and the role of clothing in collegiate cheerleaders’ body images. J Athl Train 47, 541548.

Keywords

Type Description Title
WORD
Supplementary materials

Dratva supplementary material
Tables S1-S4 and Figure S1

 Word (209 KB)
209 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed