Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T21:55:25.301Z Has data issue: false hasContentIssue false

Nonlinear Alfvén Waves in Weakly Ionised Dusty Plasmas

Published online by Cambridge University Press:  05 March 2013

N. F. Cramer
Affiliation:
Theoretical Physics Department and Research Centre for Theoretical Astrophysics, School of Physics, The University of Sydney, NSW 2006, Australia
J. I. Sakai
Affiliation:
Faculty of Engineering, Toyama University, 3190 Gofuko, Toyama, 930Japan
S. V. Vladimirov
Affiliation:
Theoretical Physics Department and Research Centre for Theoretical Astrophysics, School of Physics, The University of Sydney, NSW 2006, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effects of charged dust on the steepening of the fields in nonlinear Alfvén waves in astrophysical weakly ionised plasmas are investigated. It is found that the formation of current singularities in the wave due to nonlinear ambipolar diffusion is strongly modified by the effects of the dust. The basic modes for propagation along the magnetic field in a dusty plasma are highly dispersive and split by the anisotropy of the magnetic field into two modes that are oppositely circularly polarised rather than linearly polarised. The right hand circularly polarised wave experiences a cutoff due to the presence of the dust. We derive nonlinear fluid equations describing the dusty plasma, and make approximations for strong coupling of the dust to the neutrals, and for stationary dust. Numerical solution of the equations shows that a nonlinear wave with sharp current features due to ambipolar diffusion involves a rotation of the wave magnetic field about the direction of propagation, and an oscillation of the field components, due to the mode splitting effects of the dust. This is in contrast to the dust-free case, where the sharp reversal of the transverse magnetic field component occurs in a single plane.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2001

References

Arons, J., & Max, C. E. 1975, ApJ, 196, L77 CrossRefGoogle Scholar
Balsara, D. S. 1996, ApJ, 465, 775 CrossRefGoogle Scholar
Brandenburg, A., & Zweibel, E. G. 1994, ApJ, 427, L91 CrossRefGoogle Scholar
Brandenburg, A., & Zweibel, E. G. 1995, ApJ, 448, 734 CrossRefGoogle Scholar
Chiueh, T. 1998, ApJ, 494, 90 Google Scholar
Cramer, N. F., & Vladimirov, S. V. 1996, Physica Scripta, 53, 586 CrossRefGoogle Scholar
Cramer, N. F., & Vladimirov, S. V. 1997, PASA, 14, 170 CrossRefGoogle Scholar
Gammie, C. F., & Ostriker, E. C. 1996, ApJ, 466, 814 Google Scholar
Havnes, O., Hartquist, T. W., & Pilipp, W. 1989, A&A, 217, L13 Google Scholar
Kim, E.-J. 1997, ApJ, 477, 183 CrossRefGoogle Scholar
Mac Low, M.-M., Norman, M. L., Königl, A., & Wardle, M. 1995, ApJ, 442, 726 Google Scholar
Melrose, D. B. 1986, Instabilities in Space and Laboratory Plasmas (Cambridge: Cambridge University Press)CrossRefGoogle Scholar
Pilipp, W., & Hartquist, T. W. 1994, MNRAS, 267, 801 CrossRefGoogle Scholar
Pilipp, W., Hartquist, T. W., Havnes, O., & Morfill, G. E. 1987, ApJ, 314, 341 CrossRefGoogle Scholar
Pudritz, R. E. 1990, ApJ, 350, 195 CrossRefGoogle Scholar
Sakai, J.-I., Kawata, T., Yoshida, K., Furusawa, K., & Cramer, N. F. 2000a, ApJ, 537, 1063 CrossRefGoogle Scholar
Sakai, J.-I., Mizuhata, Y., Kawata, T., & Cramer, N. F. 2000b, ApJ, 544, 1108 Google Scholar
Spitzer, L. Jr., 1978, Physical Processes in the Interstellar Medium (New York: Wiley)Google Scholar
Suzuki, M., & Sakai, J. I. 1996, ApJ, 465, 393 Google Scholar
Suzuki, M., & Sakai, J. I. 1997, ApJ, 487, 921 CrossRefGoogle Scholar
Vladimirov, S. V., & Cramer, N. F. 1996, Phys. Rev. E, 54, 6762 CrossRefGoogle Scholar
Wardle, M. 1998, MNRAS, 298, 507 Google Scholar
Wardle, M., & Ng, C. 1999, MNRAS, 303, 239 Google Scholar