Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T06:02:42.268Z Has data issue: false hasContentIssue false

The Optical/Near-IR Colours of Red Quasars

Published online by Cambridge University Press:  05 March 2013

Paul J. Francis
Affiliation:
Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 0200, Australia; pfrancis@mso.anu.edu.au Joint appointment with the Department of Physics and Theoretical Physics, Faculty of Science, Australian National University, Canberra, ACT 0200, Australia
Matthew T. Whiting
Affiliation:
School of Physics, University of Melbourne, Parkville, Vic. 3052, Australia; mwhiting@physics.unimelb.edu.au
Rachel L. Webster
Affiliation:
School of Physics, University of Melbourne, Parkville, Vic. 3052, Australia; rwebster@physics.unimelb.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present quasi-simultaneous multi-colour optical/near-IR photometry for 157 radio selected quasars, forming an unbiassed sub-sample of the Parkes Flat-Spectrum Sample. Data are also presented for 12 optically selected QSOs, drawn from the Large Bright QSO Survey. The spectral energy distributions of the radio- and optically-selected sources are quite different. The optically selected QSOs are all very similar: they have blue spectral energy distributions curving downwards at shorter wavelengths. Roughly 90% of the radio-selected quasars have roughly power-law spectral energy distributions, with slopes ranging from Fvv0 to Fvv−2. The remaining 10% have spectral energy distributions showing sharp peaks: these are radio galaxies and highly reddened quasars. Four radio sources were not detected down to magnitude limits of H ∼ 19·6. These are probably high redshift (z > 3) galaxies or quasars. We show that the colours of our red quasars lie close to the stellar locus in the optical: they will be hard to identify in surveys such as the Sloan Digital Sky Survey. If near-IR photometry is added, however, the red power-law sources can be clearly separated from the stellar locus: IR surveys such as 2MASS should be capable of finding these sources on the basis of their excess flux in the K-band.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2000

References

Benoist, C., et al. 1999, A&A, 346, 58 Google Scholar
Bersanelli, M., Bouchet, P., & Falomo, R. 1991, A&A, 252, 854 Google Scholar
Bessell, M. S., Castelli, F., & Plez, B. 1998, A&A, 333, 231 Google Scholar
Carter, B. S., & Meadows, V. S. 1995, MNRAS, 276, 734 CrossRefGoogle Scholar
Drinkwater, M. J., Webster, R. L., Francis, P. J., Condon, J. J., Ellison, S. L., Jauncey, D. L., Lovell, J., Peterson, B. A., & Savage, A. 1997, MNRAS, 284, 85 Google Scholar
Francis, P. J. 1996, PASA, 13, 212 Google Scholar
Francis, P. J., Hewett, P. C., Foltz, C. B., & Chaffee, C. B. 1991, ApJ, 373, 465 Google Scholar
Graham, J. A. 1982, PASP, 94, 265 CrossRefGoogle Scholar
Heidt, J., & Wagner, S. J. 1996, A&A, 305, 42 Google Scholar
Ledden, S. E., & O'Dell, S. L. 1983, ApJ, 270, 434 Google Scholar
McCarthy, P. 1992, ARA&A, 31, 639 Google Scholar
McGregor, P., Hart, J., Downing, M., Hoadley, D., & Bloxham, G. 1994, in Infrared Astronomy with Arrays: The Next Generation, ed. I. S. McLean (Dordrecht: Kluwer), p. 299 CrossRefGoogle Scholar
MacKenty, J. W., et al. 1997, NICMOS Instrument Handbook, Version 2·0 (Baltimore: STScI)Google Scholar
Masci, F. J., Webster, R. L., & Francis, P. J. 1998, MNRAS, 301, 975 Google Scholar
Morris, S. L., Weymann, R. J., Anderson, S. F., Hewett, P. C., Foltz, C. B., Chaffee, F. H., & Francis, P. J. 1991, AJ, 102, 1627 Google Scholar
Neugebauer, G., Green, R. F., Matthews, K., Schmidt, M., Soifer, B. T., & Bennet, J. 1987, ApJS, 63, 615 CrossRefGoogle Scholar
Prandoni, I., et al. 1999, A&A, 345, 448 Google Scholar
Rieke, G. H., Lebofsky, M. J., & Wisniewski, W. A. 1982, ApJ, 263, 73 CrossRefGoogle Scholar
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525 Google Scholar
Serjeant, S., & Rawlings, S. 1997, Nature, 379, 304 CrossRefGoogle Scholar
Stickel, M., Rieke, G. H., Kühr, H., & Rieke, M. J. 1996, ApJ, 468, 556 Google Scholar
Wagner, S. J., Sanchez-Pons, F., Quirrenbach, A., & Witzel, A. 1990, A&A, 235, L1 Google Scholar
Warren, S. J., Hewett, P. C., & Foltz, C. B. 2000, MNRAS, 312, 827 Google Scholar
Webster, R. L., Francis, P. J., Peterson, B. A., Drinkwater, M. J., & Masci, F. J. 1995, Nature, 375, 469 CrossRefGoogle Scholar
Whiting, M. T., Webster, R. L., & Francis, P. J. 2000, MNRAS, submittedGoogle Scholar
Wilkes, B. J., Wright, A. E., Jauncey, D. L., & Peterson, B. A. 1983, PASA, 5, 2 Google Scholar
Wills, B., Netzer, H., & Wills, D. 1985, ApJ, 288, 94 CrossRefGoogle Scholar