Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T22:19:39.582Z Has data issue: false hasContentIssue false

Acetylcholine receptors

Published online by Cambridge University Press:  17 March 2009

H. P. Rang
Affiliation:
Department of Pharmacology, Medical and Biological Sciences Building, University of Southampton

Extract

The idea that certain drugs and neurotransmitters produce their effects by combining with specific receptors was first clearly expressed by Langley (1905) on the basis of the selective and localized effect of nicotine on striated muscle fibres. In 1914, Langley published a paper in which the antagonism between ‘curari’ and nicotine was analysed and measured as the ratio by which the nicotine concentration had to be increased in order to produce a standard response in the presence of tubocurarine. It was clear that Langley had in mind the idea of competition between nicotine and curare for the receptor sites and it was surprising that he did not formulatethe theory quantitatively, particularly since Hill, working in Langley's laboratory in 1909, published a mathematical analysis of the action of nicotine on frog muscle giving kinetic and equilibrium equations based on the law of mass action, which could easily have been extended to give an account of competitive antagonism. Barger & Dale (1910) did not favour the idea of specific receptors for sympathomimetic amines.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altamirano, M., Coates, C. W., Grundfest, H. & Nachmansohn, D. (1955). Electric activity in electric tissue. III. Modification of electrical activity by acetylcholine and related compounds. Biochim. biophys. Acta 16, 449.CrossRefGoogle ScholarPubMed
Altamirano, M. & Coates, C. W. (1957). Effects of potassium on electroplax of Electrophorus electricus. J. cell. comp. Physiol. 49, 69102.CrossRefGoogle ScholarPubMed
Anderson, C. R. & Stevens, C. F. (1973). Voltage clamp analysisof acetylcholine produced endplate current fluctuations at frog neuromuscular junction. J. Physiol., Lond. 235, 655691.CrossRefGoogle Scholar
Ariens, E. J. (1954). Affinity and intrinsic activity in the theory of competitive inhibition. Archs int. Pharmacodyn. Ther. 99, 32.Google ScholarPubMed
Ariens, E. J., Rossum, J. M.van & Simonis, A. M. (1964). Molecular Pharmacology, vol. I (ed. Ariens, E. J.). New York, London: Academic Press.Google Scholar
Armett, C. M. & Ritchie, J. M. (1960). The action of acetyicholine on conduction in mammalian non-myelinated fibres and its prevention by an anticholinesterase. J. Physiol., Lond. 152, 141158.CrossRefGoogle Scholar
Armett, C. M. & Ritchie, J. M. (1961). The action of acetylcholine and some related substances on conduction in mammalian non-myelinated nerve fibres. J. Physiol., Lond. 155, 372384.CrossRefGoogle ScholarPubMed
Armett, C. J. & Ritchie, J. M. (1963). The ionic requirements for the action of acetylcholine on mammalian non-myelinated nerve fibres. J. Physiol., Lond. 165, 141159.CrossRefGoogle Scholar
Armstrong, C. M. & Bezanilla, F. (1973). Currents related to movements of the gating particles of the sodium channel. Nature, Lond. 242, 459461.CrossRefGoogle Scholar
Arunlakshana, O. & Schild, H. O. (1959). Some quantitative usesof drug antagonists. Br. J. Pharmac. 14, 4858.Google ScholarPubMed
Barger, G. & Dale, H. H. (1910). Chemical structure and sympathomimetic action of amines. J. Physiol., Lond. 41, 1959.CrossRefGoogle ScholarPubMed
Barlow, R. B., Scott, N. C. & Stephenson, R. P. (1967). The affinity and efficacy of onium salts on the frog rectus abdominis. Br. J. Pharmac. 31, 188196.Google ScholarPubMed
Barnard, E. A.Rymaszewska, T. & Wieckowski, J. (1971 a). Cholinesterases at individual neuromuscular junctions. In Cholinergic Ligand Interactions (ed. Triggle, , Moran, and Barnard, ), pp. 175200. New York, London: Academic Press.CrossRefGoogle Scholar
Barnard, E. A., Wieckowski, J. & Chiu, T. H. (1971 b). Cholinergic receptor molecules and cholinesterase molecules at mouse skeletal muscle junctions. Nature, Lond. 234, 207209.CrossRefGoogle ScholarPubMed
Bartels, E., Deal, W., Karlin, A. & Mautner, H. (1970). Affinity oxidation of the reduced acetylcholine receptor. Biochim. biophys. Acta 203, 568571.CrossRefGoogle ScholarPubMed
Bartels, E., Wassermann, N. H. & Erlanger, B. F. (1971). Photochromic activators of the acetyicholine receptor. Proc. natn. Acad. Sd. U.S.A. 68, 18201823.CrossRefGoogle Scholar
Beh-Haim, D., Landau, E. M. & Silman, I. (1973). The role of a reactive disulphide bond in the function of the acetyicholine receptor at the frog neuromuscular junction. J. Physiol., Lond. 234, 305325.CrossRefGoogle Scholar
Bennett, M. R. (1972). Automonic Neuromuscular Transmission. Cambridge University Press.Google Scholar
Bennett, M. V. L. (1961). Modes of operation of electric organs. Ann. N.Y. Acad. Sci. 94, 458509.CrossRefGoogle Scholar
Bennett, M. V. L. (1970). Comparative physiology in electric organs. A. Rev. Physiol. 32, 471528.CrossRefGoogle ScholarPubMed
Bennett, M. V. L. & Grundfest, H. (1961 a). The electrophysiology of marine electric fishes. II. The electroplaques of the main and accessory organ of Narcine brasiliensis. J. gen. Physiol. 44, 805818.CrossRefGoogle ScholarPubMed
Bennett, M. V. L. & Grundfest, H. (1961 b). The electrophysiology of marine electric fishes. III. The electroplaques of the stargazer Astroscopus y-graecum. J. gen. Physiol. 44, 819843.CrossRefGoogle ScholarPubMed
Bennett, M. V. L., Wurzel, M. & Grundfest, H. (1961). The electrophysiology of marine electric fishes. I. Properties of the electroplaques of Torpedo nobiliana. J. gen. Physiol. 44, 757804.CrossRefGoogle ScholarPubMed
Beranek, R. & Vyskocil, F. (1967). The action of tubocurarine and atropine on the normal and denervated rat diaphragm. J. Physiol., Lond. 188, 5366.CrossRefGoogle ScholarPubMed
Berg, D. K., Kelly, R. B., Sargent, P. B., Williamson, P. & Hall, Z. W. (1972). Binding of c bungarotoxin to acetyicholine receptors in mammalian muscle. Proc. natn. Acad. Sci. U.S.A. 69, 147151.CrossRefGoogle Scholar
Betz, W. J. & Sakmann, B. (1971). ‘Disjunction’ of frog meuromuscular synapses by treatment with proteolytic enzymes. Nature, New Biology 232, 9495.CrossRefGoogle Scholar
Betz, W. J. & Sakmann, B. (1973). Effects of proteolytic enzymes on function and structure of frog neuromuscular junctions. J. Physiol., Lond. 230, 673688.CrossRefGoogle ScholarPubMed
Beychok, S. (1965). On the problems of isolating the specific acetyicholinereceptor. Biochem. Pharmac. 14, 12491255.CrossRefGoogle Scholar
Biesecker, G. (1973). Molecular properties of the cholinergic receptor purified from Electrophorus electricus. Biochemistry, N.Y. 12, 44034409.CrossRefGoogle ScholarPubMed
Blackman, J. G., Ginsborg, B. L. & Ray, D. (1963). Synaptic transmission in the sympathetic ganglion of the frog. J. Physiol., Lond. 167, 355373.CrossRefGoogle ScholarPubMed
Blankenship, J. E., Wachtel, H. & Kandel, E. R. (1971). Ionic mechanisms of excitatory, inhibitory, and dual synaptic actions mediated by an identified interneuron in abdominal ganglion of Aplysia. J. Neurophysiol. 34, 7692.CrossRefGoogle ScholarPubMed
Bolton, T. B. (1972). The depolarizing action of acetylcholine or carbacholin intestinal smooth muscle. J. Physiol., Lond. 220, 647672.CrossRefGoogle ScholarPubMed
Bolton, T. B. (1973). In Drug Receptors (ed. Rang, H. P.). London: Macmillan.Google Scholar
Born, G. V. R. & Bulbring, E. (1956). The movement of potassiumbetween smooth muscle and the surrounding fluid. J. Physiol., Lond. 131, 690703.CrossRefGoogle ScholarPubMed
Bosmann, H. B. (1972). Acetyicholine receptor. I. Identification and characterization of a cholinergic receptor of guinea pig cerebral cortex. J. biol. Chem. 247, 130145.CrossRefGoogle Scholar
Brading, A. F. (1971). The effect of carbachol on the efflux of sodium fromsmooth muscle. J. Physiol., Lond. 215, 4647P.Google ScholarPubMed
Bregestozski, P. D., Chailachjan, L. M., Dunin-Barkovski, V. L., Potapova, T. M. & Veprintsev, B. N. (1972). Effect of temperature on theendplate equilibrium potential. Nature, Lond. 236, 453454.CrossRefGoogle Scholar
Brookes, N. & Werman, R. (1973). The cooperativity of γ-aminobutyric acid action on the membrane of locust muscle fibres. Mol. Pharmacol. 9, 571579.Google Scholar
Bulbring, E., Brading, A. B., Jones, A. W. & Tomita, T. (1971). Smooth Muscle. London: Arnold.Google Scholar
Bulbring, E. & Kuriyama, H. (1963). Effects of changes in ionicenvironment on the action of acetylcholine and adrenaline on the smooth muscle cells of guinea pigtaenia coli. J. Physiol., Lond. 166, 5974.CrossRefGoogle Scholar
Burgen, A. S. V. (1966). The drug-receptor complex. J. Pharm. Pharmac. 18, 137149.CrossRefGoogle ScholarPubMed
Burgen, A. S. V. & Spero, L. (1968). The action of acetylcholine and other drugs on the efflux of potassium and rubidium from smooth muscle of the guinea-pig intestine. Br. J. Pharmac. 34, 99115.CrossRefGoogle ScholarPubMed
Burgen, A. S. V. & Spero, L. (1970). The effects of calcium andmagnesium on the response of intestinal smooth muscle to drugs. Br. J. Pharmac. 40, 492500.CrossRefGoogle Scholar
Burgen, A. S. V. & Terroux, K. G. (1953). On the negative inotropic effect in the cat's auricle. J. Physiol., Lond. 120, 449464CrossRefGoogle ScholarPubMed
Casteels, R. (1969). Calculation of the membrane potential in smooth musclecells of the guinea pig taenia coli by the Goldman equation. J. Physiol., Lond. 205, 193208.CrossRefGoogle Scholar
Castillo, J. Del, (1973). Modification and activation of cholinergic receptors in normal striated muscle by iontophoretically (or electro-osmotically) applied drugs and reagents. Neurosci. Res. Progr. Bull. II, 225227.Google Scholar
Castillo, J. Del, & Katz, B. (1954). The membrane change produced by the neuromuscular transmitter. J. Physiol., Lond. 125, 546565.CrossRefGoogle ScholarPubMed
Castillo, J. Del, Bartels, E. & Sobrino, J. A. (1972). Microelectrophoretic application of cholinergic compounds, protein oxidizing agents, and mercurials to the chemically excitable membrane of the electroplax. Proc. natn. Acad. Sci. U.S.A. 69, 20812085.CrossRefGoogle Scholar
Castillo, J. Del, Escobar, I. & Gijon, E. (1971). Effects of the electrophoretic application of sulphydryl reagents to the endplate receptors. Int. J. Neurosci. I, 199209.CrossRefGoogle Scholar
Castillo, J. Del, & Katz, B. (1957). A study of curare action with an electrical micro-method. Proc. R. Soc. Lond. B 146, 339356.Google Scholar
Castillo, J. Del, Rodriguez, A. & Romero, C. A. (1967). Pharmacological studies on an artificial transmitter-receptor system. Ann. N.Y. Acad. Sci. 144, 803818.CrossRefGoogle Scholar
Castillo, J. Del, Rodriguez, A., Romero, C. A. & Sanchez, V. (1966). Lipid film as transducers for detection of Ag-Ab and enzyme-substrate reactions. Science, N.Y. 153, 185188.CrossRefGoogle Scholar
Chagas, C., (1959). Studies on the mechanism of curarization. Ann. N. Y. Acad. Sci. 81, 345357.CrossRefGoogle Scholar
Chagas, C., (1962). The fate of curare during curarization. In Curare and Curare-like agents. Ciba Foundation Study Group No. 12 Churchill: London.Google Scholar
Chagas, C., Penna-Franca, E., Nishie, K., Crocker, C. & Miranda, M. (1956). Sur la fixation du triiodoethylate de gallamine radioactif auniveau des electroplaques de l' Electrophorus electricus. C. r. hebd. Séanc. Acad. Sci., Paris 242, 26712674.Google Scholar
Chagas, C., Penna-Franca, E., Nishie, K. & Garcia, E. J. (1958). A study of the specificity of the complex formed by gallamine triethiodide with a macromolecular constituent of the electric organ. Archs Biochem. Biophys. 75, 251259.CrossRefGoogle ScholarPubMed
Chandler, W. K. & Meves, H. (1965). Voltage clamp experiments on internally perfused giant axons. J. Physiol., Lond. 180, 788820CrossRefGoogle ScholarPubMed
Chang, C. C., Chen, T. F. & Cuang, S.-T. (1973 a). N, O-di and N, N, Otri[3H]acetyl α-bungarotoxin as specific labelling agents of cholinergic agents. Br. J. Pharmac. 47, 147160.CrossRefGoogle Scholar
Chang, C. C., Chen, T. F. & Chuang, S.-T. (1973 b). Influence of chronic neostigmine treatment on the number of acetyicholine receptors and the release of acetylcholine from the rat diaphragm. J. Physiol., Lond. 230, 613618.CrossRefGoogle Scholar
Chang, C. E., & Lee, C. Y. (1963). Isolation of neurotoxins fromthe venom of Bungarus multiciuctus and their modes of neuromuscular blocking action. Archs in Pharmacodyn. Ther. 144, 241257.Google Scholar
Chang, C. C., & Lee, C. Y. (1966). Electrophysiological study ofneuromuscular blocking action of cobra neurotoxin. Br. J. Pharmac. 28, 172181.Google ScholarPubMed
Chang, C. C., & Su, M. J. (1974). Does -α-Bungarotoxin inhibit motor endplate acetylcholinesterase? Nature, Lond. 247, 480.CrossRefGoogle ScholarPubMed
Changeux, J. P., Kasai, M. & Lee, C. Y. (1970 a). Use of a snake venom toxin to characterise the cholinergic. receptor protein. Proc. natn. Acad. Sci. U.S.A. 67, 1241–7.CrossRefGoogle ScholarPubMed
Changeux, J. P., Kasai, M., Huchet, M. & Meunier, J. C. (1970 b). Extraction a partir du tissu electrique de gyamnote d'une protèine prèsentant plusiers propriétés caractéristiques du récepteur physiologiques de l'acétylcholine. C. r. hebd. Séanc. Acad. Sci., Paris 270, 28642867.Google Scholar
Changeux, J. P., Meunier, J. C. & Huchet, M. (1971). Studies on the cholinergic receptor protein of electrophorus electricus. Mol. Pharmacol. 7, 538553.Google ScholarPubMed
Changeux, J. P., Meunier, J. C., Olsen, R. W., Weber, M., Bourgeois, J. P., Popot, J. L., Cohen, J. B., Hazelbauer, G. L. & Lester, H. A. (1973). Studies on the mode of action of cholinergic agonists at the molecular level. In Drug Receptors (ed. Rang, H. P.). London: Macmillan.Google Scholar
Changeux, J. P., & Podleski, T. R. (1968). On the excitability and cooperativity of the electroplax membrane. Proc. natn. Acad. Sci., U.S.A. 59, 944950.CrossRefGoogle ScholarPubMed
Changeux, J. P., Thiery, J., Tung, Y. & Kittel, C. (1967). On the cooperativity of biological membranes. Proc. natn. Acad. Sci., U.S.A. 57, 335341.CrossRefGoogle ScholarPubMed
Chiarandini, D. J., Stefani, E. & Gerschenfeld, H. M. (1967). Ionic mechanisms of cholinergic excitation in molluscan neurons. Science, N.Y. 156, 15971599.CrossRefGoogle ScholarPubMed
Chiu, T. H., Dolly, J. O. & Barnard, E. A. (1973). Solubilization from skeletal muscle of two components that specifically bind α-bungarotoxin. Biochem. Biophys. Res. Comm. 51, 205213.CrossRefGoogle Scholar
Clark, A. J. (1926 a). The reaction between acetylcholine and muscle cells. J. Physiol., Lond. 61, 530546.CrossRefGoogle Scholar
Clark, A. J. (1926 b). The antagonism of acetylcholine by atropine. J. Physiol., Lond. 61, 547556.CrossRefGoogle Scholar
Clark, A. J. (1937). Handb. exp. Pharmak. 4.Google Scholar
Cohen, J. B. & Changeux, J. P. (1973). Interaction d'un ligand fluorescent avec la protéine réceptrice de l'acétylcholine presentedans les fragments de membrane de Torpille. C. r. hebd. Séanc. Acad. Sci., Paris 277, 603606.Google Scholar
Cohen, J. B., Weber, M., Huchet, M. & Changeux, J. P. (1972). Purification from Torpedo marmorata electric tissue of membrane fragments particularly rich in cholinergic receptor protein. FEBS Lett. 26, 4347.CrossRefGoogle Scholar
Cole, K. S. (1968). Membranes, Ions and Impulses. Berkeley and Los Angeles: University of California Press.CrossRefGoogle Scholar
Colquhoun, D. (1973). The relation between classical and cooperative modelsfor drug action. In Drug Receptors (ed. Rang, H. P.). London: Macmillan.Google Scholar
Colquhoun, D., Henderson, R. & Ritchie, J. M. (1972). The binding of labelled tetrodotoxin to non-myelinated nerve fibres. J. Physiol., Lond. 227, 95126.CrossRefGoogle ScholarPubMed
Colquhoun, D., Rang, H. P. & Ritchie, J. M. (1974.). The binding of tetrodotoxin and x-bungarotoxin to normal and denervated mammalian muscle. J. Physiol., Lond. (in the Press).CrossRefGoogle Scholar
Colquhoun, D. & Ritchie, J. M. (1972). The kinetics of the interaction between tetrodotoxin and mammalian non-myelinated fibres. Mol. Pharinacol. 8, 285292.Google Scholar
Creese, R. & England, J. M. (1970). Decamethonium in depolarized muscle and the effects of tubocurarine. J. Physiol., Lond. 210, 345361.CrossRefGoogle ScholarPubMed
Creese, R. & Maclagan, J. (1967). Autoradiography of decamethonium in rat muscle. Nature, Lond. 215, 988989.CrossRefGoogle ScholarPubMed
Creese, R. & Maclagan, J. (1970). Entry of decamethonium in ratmuscle studied by autoradiography. J. Physiol., Lond. 210, 363386.CrossRefGoogle Scholar
Creese, R., Taylor, D. B. & Case, R. (1971). Labelled decamethonium in denervated skeletal muscle. J. Pharmac. exp. Ther. 176, 418422.Google ScholarPubMed
Cuthbert, A. W. & Dunant, Y. (1970). Diffusion of drugs throughstationary water layers as the rate limiting process in their action at membrane receptors. Br. J. Pharmac. 40, 508521.CrossRefGoogle ScholarPubMed
Cuthbert, A. W. & Young, J. M. (1973). The number of muscarinicreceptors in chick amnion muscle. Br. J. Pharmac. 49, 498505.CrossRefGoogle Scholar
Dale, H. H. (1914). The action of certain esters and ethers of choline, andtheir relation to muscarine. J. Pharmac. exp. Ther. 546, 147190.Google Scholar
Daniel, E. E. (1964). Effects of drugs on contractions of vertebrate smoothmuscle. Ann. Rev. Pharmac. 4, 189222.CrossRefGoogle Scholar
Deguchi, T. & Narahashi, T. (1971). Effects of procaine on ionic conductances of endplate membranes. J. Pharmac. exp. Ther. 176, 423433.Google ScholarPubMed
Denburg, J. L. (1972). An axon plasma membrane preparation from the walkingleg of the lobster Homarus americanus. Biochim. biophys. Acta 282, 453458.CrossRefGoogle Scholar
Denburg, J. L., Eldefrawi, M. E. & O'Brien, R. D. (1972). Macromolecules from lobster axon membranes that bind cholinergic ligands and local anaesthetics. Proc. natn. Acad. Sci. U.S.A. 69, 177181.CrossRefGoogle Scholar
Denburg, J. L. & O' Brien, R. D. (1973). Axonal cholinergicbinding macromolecule. Response to neuroactive drugs. J. Med. Chem. 16, 5760.CrossRefGoogle Scholar
Dennis, M. J., Harris, A. J. & Kuffler, S. W. (1971). Synaptic transmission and its duplication by focally applied acetyicholine in parasympathetic neurons in the heart of a frog. Proc. R. Soc. Lond. B 177, 509539.Google Scholar
Robertis, E.De (1971). Molecular biology of synaptic receptors. Science, N.Y. 171, 963971.CrossRefGoogle ScholarPubMed
Robertis, E.De (1973). The isolation and properties of receptor proteolipids. In Drug Receptors (ed. Rang, H. P.), pp. 257272. London: Macmillan.CrossRefGoogle Scholar
Robertis, E.De, Fiszer, S., Pasquini, J. M. & Soto, E. F.(1969). Isolation and chemical nature of the receptor for -tubocurarine in nerve-endingmembranes of the cerebral cortex. J. Neurobiol. I, 4152.CrossRefGoogle Scholar
Robertis, E.De, Fiszer, S. & Soto, E. F. (1967). Cholinergic binding capacity of proteolipids from isolated nerve-ending membranes. Science, N.Y. 158, 928929.CrossRefGoogle ScholarPubMed
Robertis, E.De, Lunt, G. S. & Torre, J. L.La (1971). Multiple binding sites for acetyicholine in a proteolipid from electric tissue. Mol. Pharmacol. 7, 97103.Google Scholar
Dettbarn, W. D. (1967). The acetyicholine system in peripheral nerve. Ann. N.Y. Acad. Sci. 144, 483503.CrossRefGoogle Scholar
Dettbarn, W. D. & Davis, F. A. (1963). Effects of acetyicholineon axonal conduction of lobster nerve. Biochim. Biophys. Acta 66, 397405.CrossRefGoogle ScholarPubMed
Dettbarn, W. D. & Davis, F. A. (1962). Effect of acetyicholine on the electrical activity of somatic nerves of the lobster. Science, N.Y. 136, 716717.CrossRefGoogle Scholar
Diamond, J. & Miledi, R. (1962). A study of foetal and new-bornrat muscle fibres. J. Physiol., Lond. 162, 393408.CrossRefGoogle ScholarPubMed
Douglas, W. W., Kanno, T. & Sampson, S. R. (1967). Influence of the ionic environment on the membrane potential of adrenal chromaffin cells and on the depolarizing effect of acetyicholine. J. Physiol., Lond. 191, 107121.CrossRefGoogle Scholar
Dunin-Barkovskii, V. L., Kovalev, S. A., Magazanik, L. G., Potapova, T. V. & Chaylakhyan, L. M. (1969). Equilibrium potentials of post- synaptic membrane activated with various cholinomimetics when the extracellular ionic medium is changed. Biofizika 14, 485494.Google Scholar
Durbin, R. P. & Jenkinson, D. H. (1961). The effect of carbachol on the permeability of depolarized smooth muscle to inorganic ions. J. Physiol., Lond. 157, 7489.CrossRefGoogle ScholarPubMed
Eccles, J. C. & Jaeger, J. C. (1958). The relationship between the mode of operation and the dimensions of the junctional regions at synapses and motor end-organs. Proc. R. Soc. Lond. B 148, 3856.Google ScholarPubMed
Edman, K. & Schild, H. O. (1962). The need for calcium in the contractile responses induced by acetyicholine and potassium in the rat uterus. J. Physiol., Lond. 161, 424.CrossRefGoogle Scholar
Ehrenpreis, S. (1959). Interaction of curare and related substances with acetylcholine receptor-like protein. Science, N.Y. 129, 16131614.CrossRefGoogle ScholarPubMed
Ehrenpreis, S. (1960). Isolation and identification of the acetylcholine receptor protein of electric tissue. Biochim. biophys. Acta., 44, 561577.CrossRefGoogle ScholarPubMed
Ehrenpreis, S. (1962). Immunohistochemical localization of drug-binding protein in tissues of electric eel. Nature, Lond. 194, 586587.CrossRefGoogle ScholarPubMed
Ehrenpreis, S. (1963). Isolation and properties of a drug-binding protein from electric tissues of electric eel. Proc. Ist Int. Pharmacol. Meeting 7, 119133.Google Scholar
Ehrenpreis, S., Fleisch, J. H. & Mittag, T. W. (1969). Approaches to the molecular nature of pharmacological receptors. Pharmac. Rev. 21, 131181.Google Scholar
Eigen, M. & Hammes, G. G. (1963). Elementary steps in enzyme reactions (as studied by relaxation spectrometry). Adv. Enzymol. 25, 138.Google ScholarPubMed
Eisenman, G., Sandblom, J. P. & Walker, U. L. (1967). Membrane structure and ion permeation. Science, N.Y. 155, 965974.CrossRefGoogle ScholarPubMed
Eldefrawi, M. E., Britten, A. G. & Eldefrawi, A. T. (1971a). Acetylcholine binding to Torpedo electroplax: relationship to acetyicholine receptors. Science, N.Y. 173, 338340.CrossRefGoogle Scholar
Eldefrawi, M. E., Britten, A. G. & O'Brien, R. D. (1971 b). Action of organophosphates on binding of cholinergic ligans. Pestic. Biochem. & Physiol. I, 101108.CrossRefGoogle Scholar
Eldefrawi, M. E. & Eldefrawi, A. T. (1972). Characterization and partial purification of the acetylcholine receptor from Torpedo electroplax. Proc. natn. Acad. Sci. U.S.A. 69, 17761780.CrossRefGoogle ScholarPubMed
Eldefrawi, M. E. & Eldefrawi, A. T. (1973). Purification and molecular properties of the acetylcholine receptor from Torpedo electroplax. Archs Biochem. Biophys. 159, 362373.CrossRefGoogle ScholarPubMed
Eldefrawi, M. E., Eldefrawi, A. T., Gilmour, L. P. & O'brien, R. D. (1971 c). Multiple affinities for binding of cholinergic ligands to a particulate fraction of Torpedo electroplax. Mol. Pharmacol. 7, 420428.Google ScholarPubMed
Eldefrawi, M. E., Eldefrawi, A. T. & O'Brien, R. D. (1971 d). Binding of five cholinergic ligands to housefly brain and Torpedo electroplax. (Relationship to acetyicholine receptors. Mol. Pharmacol. 7, 104110.)Google Scholar
Eldefrawi, M. E., Eldefrawi, A. T. & O'Brien, R. D. (1971 e). Binding sites for cholinergic ligands in a particulate fraction of Electrophoruselectroplax. Proc. natn. Acad. Sci. U.S.A. 68, 10471050.CrossRefGoogle Scholar
Eldefrawi, M. E., Eldefrawi, A. T., Siefert, S. & O'Brien, R. D. (1972). Properties of lubrol-solubilized acetyicholine receptor from Torpedo electroplax. Archs Biochem. Biophys. 150, 210218.CrossRefGoogle Scholar
Eldefrawi, M. E. & O'Brien, R. D. (1971). Autoinhibition of acetylcholine binding to Torpedo electroplax; a possible molecular mechanism for desensitization. Proc. natn. Acad. Sci. U.S.A. 68, 20062007.CrossRefGoogle ScholarPubMed
Evans, D. H. L. & Schild, H. O. (1957). Mechanism of contraction of smooth muscle by drugs. Nature, N.Y. 180, 341342.CrossRefGoogle ScholarPubMed
Evans, D. H. L., Schild, H. O. & Thesleff, S. (1958). Effects of drugs on depolarized plain muscle. J. Physiol., Lond. 143, 474485.CrossRefGoogle ScholarPubMed
Fambrough, D. M., Drachman, D. B. & Satyamurti, S. (1973). Neuromuscular junction in myasthenia gravis: decreased acetyicholine receptors. Science, N.Y. 182, 293295.CrossRefGoogle Scholar
Fambrough, D. M. & Hartzell, H. C. (1972). Acetylcholine receptors: number and distribution at neuromuscular junctions in rat diaphragm. Science, N.Y. 176, 189191.CrossRefGoogle ScholarPubMed
Fatt, P. & Katz, B. (1951). An analysis of the endplate potential recorded with an intracellular electrode. J. Physiol., Lond. 115, 320370.CrossRefGoogle ScholarPubMed
Feldberg, W. & Fessard, A. (1942). The cholinergic nature of the nerves to the electric organ of the Torpedo (Torpedo marmorata). J. Physiol., Lond. 101, 200216.CrossRefGoogle Scholar
Feltz, A. (1971). Competitive interaction of β-guanidine propionic acidand μ-aminobutyric acid on the muscle fibre of the crayfish. J. Physiol., Lond. 216, 391402.CrossRefGoogle Scholar
Feltz, A. & Mallart, A. (1971 a). An analysis of acetylcholine responses of junctional and extrajunctional receptors of frog muscle fibres. J. Physiol., Lond. 218, 85100.CrossRefGoogle ScholarPubMed
Feltz, A. & Mallart, A. (1971 b). Ionic permeability changes induced by some cholinergic agonists on normal and denervated frog muscles. J. Physiol., Lond. 218, 101116.CrossRefGoogle ScholarPubMed
Ferry, C. B. & Marshall, A. R. (1971). The termination of action of transmitter at the neuromuscular junction as a function of release. J. Physiol., Lond. 219, 3334P.Google ScholarPubMed
Ferry, C. B. & Marshall, A. R. (1973). An anti-curare effect ofhexamethonium at the neuromuscular junction. Br. J. Pharmac. 47, 353362.CrossRefGoogle Scholar
Fewtrell, C. M. S. & Rang, H. P. (1971). Distribution of 3H-benzilylcholine mustard in subcellular fractions of smooth muscle from guinea- pig ileum. Br. J. Pharmac. 43, 417P.Google ScholarPubMed
Fewtrell, C. M. S. & Rang, H. P. The labelling of cholinergic receptors in smooth muscle. In Drug Receptors (ed. Rang, H. P.), pp. 211224. London: Macmillan.Google Scholar
Finkelstein, A. & Mauro, A. (1963). Equivalent circuits as related to ionic systems. Biophys. J. 3, 215237.CrossRefGoogle ScholarPubMed
Fiszer, S. & Robertis, E.De (1972). Binding of α-bungarotoxin to the cholinergic receptor proteolipid from Electrophorus electroplax. Biochim. biophys. Acta 274, 258265.CrossRefGoogle Scholar
Frankenhaeuser, B. & Moore, L. E. (1963). The specificity of the initial current in myelinated nerve fibres of Xenopus laevis. J. Physiol., Lond. 169, 438444.CrossRefGoogle ScholarPubMed
Franklin, G. I. & Potter, L. T. (1972). Studies of the binding of α- bungarotoxin to membrane-bound and detergent-dispersed acetylcholinereceptors from Torpedo electric tissue. FEBS Lett. 28, 101106.CrossRefGoogle Scholar
Furchgott, R. F. (1955). The pharmacology of vascular smooth muscle. Pharmac. Rev. 7, 183265.Google ScholarPubMed
Furchgott, R. F. (1966). The use of β-haloalkylamines in the differentiation of receptors and in the determination of dissociation constants of receptor-agonist complexes. Adv. Drug Res. 3, 2155.Google Scholar
Furchgott, R. F. & Bursztyn, P. (1967). Comparison of dissociation constants and of relative efficacies of selected agonists acting on parasympathetic receptors. Ann. N.Y. Acad. Sci. 144, 882898.CrossRefGoogle Scholar
Furukawa, T. & Furukawa, A. (1959). Effects of methyl and ethylderivatives of ammonium on the neuromuscular junction. Jap. J. Physiol. 9, 130147.CrossRefGoogle ScholarPubMed
Gaddum, J. H. (1926). The action of adrenaline and ergotamine on the uterusof the rabbit. J. Physiol., Lond. 61, 141150.CrossRefGoogle Scholar
Gaddum, J. H. (1937). The quantitative effects of antagonistic drugs. J. Physiol., Lond. 89, 79P.Google Scholar
Gage, P. W. & Armstrong, C. M. (1968). Miniature endplate currents in voltage clamped muscle fibres. Nature, Lond. 218, 363365.CrossRefGoogle Scholar
Gage, P. W. & McBurney, R. N. (1973). An analysis of the relationship between the current and potential generated by a quantum of acetylcholine in muscle fibres without transverse tubules. J. Membrane Biol. 12, 247272.CrossRefGoogle ScholarPubMed
Gill, E. W. & Rang, H. P. (1966). An alkylating derivative of benzylcholine with specific and long lasting parasympatholytic activity. Mol. Pharmacol. 2, 284297.Google Scholar
Ginsborg, B. L. (1967). Ion movements in junctional transmission. Pharmac. Rev. 19, 289316.Google ScholarPubMed
Ginsborg, B. L. (1973). Electrical changes in the membrane in junctional transmission. Biochim. biophys. Acta 300, 289317.CrossRefGoogle ScholarPubMed
Ginsborg, B. L. & Stephenson, R. P. (1974). Br. J. Pharmac. (in the Press).Google Scholar
Goldman, D. E. (1943). Potential, impedance and rectification in membranes. J. gen. Physiol. 27, 3760.CrossRefGoogle ScholarPubMed
Goldman, D. E. (1964). A molecular structural basis for the excitation properties of axons. Biophys. J. 4, 166188.CrossRefGoogle Scholar
Grundfest, H. & Bennett, M. V. L. (1961). Studies on morphologyand electrophysiology of electric organs. I. Electrophysiology of marine electric fishes. In Bioelectrogenesis (ed. Chagas, and Paes-de-Carvalho, ). Amsterdam: Elsevier.Google Scholar
Guth, L. (1968). Trophic' influences of nerve and muscle. Physiol. Rev. 48, 645687.CrossRefGoogle Scholar
Hall, Z. W. (1972). Release of neurotransmitters and their interaction withreceptors. A. Rev. Biochem. 811, 925947.CrossRefGoogle Scholar
Hall, Z. W. & Kelly, R. G. (1971). Enzymatic detachment of endplate acetyicholinesterase from muscle. Nature, New Biology 232, 6263.Google Scholar
Hammes, G. G. (1968). Relaxation spectrometry of enzymatic reactions. Accounts of Chemical Research I, 321329.CrossRefGoogle Scholar
Harrington, L. (1973). A linear dose-response curve at the motor endplate. J. gen. Physiol. 62, 5876.CrossRefGoogle ScholarPubMed
Hartzell, H. C. & Fambrough, D. M. (1972). Acetyicholine receptors. Distribution and extrajunctional density in rat diaphragm after denervation correlated with acetylcholine sensitivity. J. gen. Physiol. 60, 248262.CrossRefGoogle Scholar
Hartzell, H. C. & Fambrough, D. M. (1973). Acetylcholine receptor production and incorporation into membranes of developing muscle fibres. Devl. Biol. 30, 153165.CrossRefGoogle Scholar
Hasson-Voloch, A. (1968). Curare and acetylcholine receptor substance.Nature, Lond. 218, 330333.CrossRefGoogle ScholarPubMed
Henderson, R. & Wang, J. H. (1972). Solubilization of a specific tetrodotoxin-binding component from garfish olfactory nerve membrane. Biochemistry, N.Y. II, 45654569.CrossRefGoogle Scholar
Higman, H. B., Podleski, T. R. & Bartels, E. (1963). Apparent dissociation constants between carbamylcholine, (+)-tubocurarine and the receptor. Biochim. biophys. Acta 75, 187.CrossRefGoogle ScholarPubMed
Higman, H. B., Podleski, T. R. & Bartels, E. (1964). Correlation of membrane potential and potassium flux in the electroplax of electrophorus. Biochim. biophys. Acta 79, 138150.Google ScholarPubMed
Hiley, C. R., Young, J. M. & Burgen, A. S. V. (1972). Labelling of cholinergic receptors in subcellular fractions from cerebral cortex. Biochem.J. 127, 86P.CrossRefGoogle ScholarPubMed
Hille, B. (1970). Ionic channels in nerve membranes. prog. Biophys. & Mol. Biol. 21, 132.CrossRefGoogle ScholarPubMed
Hodgkin, A. L. (1964). The Conduction of the Nervous Impulse. Liverpool University Press.Google Scholar
Hodgkin, A. L. & Huxley, A. F. (1952). Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol., Lond. 116, 449472.CrossRefGoogle ScholarPubMed
Hodgkin, A. L. & Katz, B. (1949). The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol., Lond. 108, 3777.CrossRefGoogle ScholarPubMed
Hodgkin, A. L. & Keynes, R. D. (1955) The potassium permeability of a giant nerve fibre. J. Physiol., Lond. 128, 6188.CrossRefGoogle ScholarPubMed
Hodgkin, A. L. & Nakajima, S. (1972). The effect of diameter onthe electrical constants of frog skeletal muscle fibres. J. Physiol., Lond. 221, 105120.CrossRefGoogle Scholar
Hoyt, R. C. (1963). The squid giant axon. Mathematical models. Biophys. J. 3, 399431.CrossRefGoogle ScholarPubMed
Hurwitz, L. (1960). Potassium transport in isolated guinea-pig ileum. Am. J. Physiol. 198, 9498.CrossRefGoogle ScholarPubMed
Hurwitz, L. & Suria, A. (1971). The link between agonist actionand response in smooth muscle. A. Rev. pharmac. 2, 303326.CrossRefGoogle Scholar
Jain, M. K., Mehl, L. E. & Cordes, E. H. (1973). Incorporation of eci electroplax acetylcholinesterase into black lipid membranes. A possible model for the cholinergic receptor. Biochem. Biophys. Res. Comm. 51, 192197.CrossRefGoogle Scholar
Jenkinson, D. H. (1960). The antagonism between tubocurarine and substanceswhich depolarize the motor endplate. J. Physiol., Lond. 152, 309324.CrossRefGoogle Scholar
Jenkinson, D. H. & Nicholls, J. G. (1961). Contractures and permeability changes produced by acetylcholine in depolarized denervated muscle. J. Physiol., Lond. 159, 111127.CrossRefGoogle ScholarPubMed
Jenkinson, D. H. & Terrar, D. A. (1973). Influence of chloride ions on changes in membrane potential during prolonged application of carbachol to frog skeletal muscle. Br. J. Pharmac. 47, 363376.CrossRefGoogle ScholarPubMed
Karlin, A. (1967). On the application of a plausible model of allosteric proteins to the receptor for acetylcholine. J. Theor. Biol. 16, 306320.CrossRefGoogle Scholar
Karlin, A. (1969). Chemical modification of the active site of the acetylcholine receptor. J. gen. Physiol. 54, 245264.CrossRefGoogle ScholarPubMed
Karlin, A. & Bartels, E. (1966). Effects of blocking sulphydrylgroups and of reducing disulfide bonds on the acetylcholine-activated permeability system of the electroplax. Biochim. biophys. Acta 126, 525535.CrossRefGoogle Scholar
Karlin, A., Prives, J., Deal, W. & Winnik, M. (1971). Affinity labelling of the acetyicholine receptor in the electroplax. J. molec. Biol. 61, 175188.CrossRefGoogle Scholar
Karlin, A. & Winnick, M. (1968). Reduction and specific alkylation of the receptor for acetylcholine. Proc. natn. Acad. Sci. U.S.A. 60, 668674.CrossRefGoogle ScholarPubMed
Karlsson, E., Heilbronn, E. & Widlund, L. (1972). Isolation of the nicotinic acetylcholine receptor by biospecific chromatography on insolubilized Naja naja neurotoxin. FEBS Lett. 28, 107111.CrossRefGoogle ScholarPubMed
Kasai, M. & Changeux, J.-P. (1971 a). In vitro excitation of purified membrane fragments by cholinergic agonists. I. Pharmacological properties of the excitable membrane fragments. J. Membrane Biol. 6, 123.CrossRefGoogle Scholar
Kasai, M. & Changeux, J.-P. (1971 b). In vitro excitation of purified membrane fragments by cholinergic agonists. II. The permeability change causedby cholinergic agonists. J. Membrane Biol. 6, 2457.CrossRefGoogle Scholar
Kasai, M. & Changeux, J.-P. (1971 c). In vitro excitation of purified membrane fragments by cholinergic agonists. III. Comparison of Dose- response curves to decamethonium with the corresponding binding curves of decamethonium to the cholinergic receptor. J. Membrane Biol. 6, 5880.CrossRefGoogle Scholar
Katz, B. & Miledi, R. (1965). The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction. Proc. R. Soc. Lond. B 161, 483495.Google ScholarPubMed
Katz, B. & Miledi, R. (1970). Membrane noise produced by acetylcholine. Nature, Lond. 226, 926963.CrossRefGoogle ScholarPubMed
Katz, B. & Miledi, R. (1971). Further observations on acetylcholine noise. Nature, New Biology 232, 124126.CrossRefGoogle ScholarPubMed
Katz, B. & Miledi, R. (1972). The statistical nature of the acetylcholine potential and its molecular components. J. Physiol., Lond. 224, 665699.CrossRefGoogle ScholarPubMed
Katz, B. & Miledi, R. (1973 a). The characteristics of ‘endplate noise’ produced by different depolarizing drugs. J. Physiol., Lond. 230, 707717.CrossRefGoogle ScholarPubMed
Katz, B. & Miledi, R. (1973 b). The binding of acetylcholine to receptors and its removal from the synaptic cleft. J. Physiol., Lond. 231, 549574.CrossRefGoogle ScholarPubMed
Katz, B. & Miledi, R. (1973). The effect of α-bungarotoxin on acetylcholine receptors. Br. J. Pharmac. 49, 138139.CrossRefGoogle ScholarPubMed
Katz, B. & Thesleff, S. (1957). A study of the ‘desensitization’ produced by acetyicholine at the motor endplate. J. Physiol., Load. 138, 6380.CrossRefGoogle Scholar
Kehoe, J. (1972 a). Three acetyicholine receptors in Aplysia neurones. J. Physiol., Lond. 225, 115146.CrossRefGoogle Scholar
Kehoe, J. (1972 b). Ionic mechanisms of a two-component cholinergic inhibition in Aplysia neurones. J. Physiol., Lond. 225, 85114.CrossRefGoogle ScholarPubMed
Kelly, J. S. (1965). Antagonism between Na+ and Ca2+ at the neuromuscular junction. Nature, Lond. 205, 296297.CrossRefGoogle ScholarPubMed
Kemp, G., Dolly, J. O., Barnard, E. A. & Wenner, C. E. (1973). Reconstitution of a partially purified endplate acetyicholine receptor preparationin lipid bilayer membranes. Biochem. Biophys. Res. Comm. 54, 607613.CrossRefGoogle Scholar
Kerkut, G. A. & Meech, R. W. (1966). The internal chloride concentration of H and D cells in the snail brain. Comp. Biochem. & Physiol. 19, 819832.CrossRefGoogle Scholar
Kerkut, G. A. & Thomas, R. C. (1964). The effect of anion injection and changes in the external potassium and chloride concentration on the reversal potentials of the ipsp and acetylcholine. Comp. Biochem. & Physiol. II, 199213.CrossRefGoogle Scholar
Keynes, R. D. & Martins-Ferreira, H. (1953). Membrane potentials in the electroplates of the electric eel. J. Physiol., Lond. 119, 315351.CrossRefGoogle ScholarPubMed
Keynes, R. D., Ritchie, J. M. & Rojas, E. (1971). The binding of tetrodotoxin to nerve membranes. J. Physiol., Lond. 213, 235254.CrossRefGoogle ScholarPubMed
Keynes, R. D. & Rojas, E. (1973). Characterization of the sodium gating current in the squid giant axon. J. Physiol., Lond. 233, 2830P.Google Scholar
Klett, R. P., Fulpius, B. W., Cooper, D., Smith, M., Reich, E. & Possani, L. D. (1973). The acetylcholine receptor. I. Purification and characterization of a macromolecule isolated from Electrophorus electricus. J. biol. Chem. 248, 68416853.CrossRefGoogle ScholarPubMed
Koester, J. & Nastuk, W. L. (1970). Reversal potentials of cholinergic partial agonists. Fedn Proc. 290, 716.Google Scholar
Koketsu, K. (1969). Cholinergic synaptic potential and the underlying ionicmechanisms. Fedn Proc 28, 101112.Google Scholar
Kordas, M. (1968 a). The effect of atropine and curarine on the timecourse of the endplate potential in frog sartorius muscle. Int. J. Neuropharmacol. 7, 523530.CrossRefGoogle Scholar
Kordas, M. (1968 b). A study of the endplate potential in sodium deficient solution. J. Physiol., Lond. 198, 8190.CrossRefGoogle Scholar
Kordas, M. (1969). The effect of membrane polarization on the time course of the endplate current in frog sartorius muscle. J. Physiol., Lond. 204, 493502.CrossRefGoogle ScholarPubMed
Kordas, M. (1972). An attempt at an analysis of the factors determining the time course of the endplate current. I. The effects of prostigmine and of the ratio Mg++ to Ca++. J. Physiol., Lond. 224, 317332.CrossRefGoogle ScholarPubMed
Koshland, D. E. & Neet, K. E. (1968). The catalytic and regulatory functions of enzymes. A. Rev. Biochem. 37, 359410.CrossRefGoogle ScholarPubMed
Koshland, D. E., Nemethy, G. & Filmer, D. (1966). Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry, N.Y. 5, 365385.CrossRefGoogle ScholarPubMed
Krnjevic, K., Pumain, R. & Renaud, L. (1971). The mechanism of excitation by acetylcholine in the cerebral cortex. J. Physiol., Lond. 215, 247268.CrossRefGoogle ScholarPubMed
Kuba, K. & Tomita, T. (1971). Effect of prostigmine on the timecourse of the endplate potential in the rat diaphragm. J. Physiol., Lond. 213, 533544.CrossRefGoogle Scholar
Kuffler, S. W., Dennis, M. J. & Harris, A. J. (1971). The development of chemosensitivity in extrasynaptic areas of the neuronal surface after denervation of the parasympathetic ganglion cells in the heart of the frog. Proc. R. Soc. Lond. B 177, 555563.Google ScholarPubMed
Kuno, M., Turkanis, S. A. & Weakley, J. N. (1971). Correlation between nerve terminal size and transmitter release at the neuromuscular junction. J. Physiol., Lond. 213, 545556.CrossRefGoogle ScholarPubMed
Kuriyama, H. (1971). In Smooth Muscle (ed. Bulbring, E., Brading, A. F., Jones, A. W. and Tomita, T.). London: Arnold.Google ScholarPubMed
Langley, J. N. (1905). On the reaction of cells and nerve endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curari. J. Physiol., Lond. 33, 374413.CrossRefGoogle ScholarPubMed
Torre, J. L.La, Lunt, G. L. & Robertis, E.De (1970). Isolation of a cholinergic receptor proteolipid from electric tissue. Proc. natn. Acad. Sci. U.S.A. 65, 716720.CrossRefGoogle ScholarPubMed
Lee, C. Y. (1972). Chemistry and pharmacology of polypeptide toxins in snake venoms. A. Rev. Pharmac. 12, 265286.CrossRefGoogle ScholarPubMed
Lee, C. Y. & Tseng, L. F. (1966). Distribution of Bungarus multicinctus venom following envenomation. Toxicon 3, 281290.CrossRefGoogle ScholarPubMed
Lee, C. Y., Tseng, L. F. & Chiu, T. H. (1967). Influence of denervation on localization of neurotoxins from elapid venoms in rat diaphragm. Nature, Lond. 215, 11771178.CrossRefGoogle Scholar
Lester, H. A. (1972 a). Blockade of acetylcholine receptors by cobra toxin: electrophysiological studies. Mol. Pharmacol. 8, 623631.Google ScholarPubMed
Lester, H. A. (1972 b). Vulnerability of desensitized or curare-treated acetylcholine receptors to irreversible blockade by cobra toxin. Mol. Pharmacol. 8, 632644.Google ScholarPubMed
Leuzinger, W. & Schneider, M. (1972). Acetylcholine-induced excitation on bilayers. Experientia 28, 256257.CrossRefGoogle ScholarPubMed
Levinson, S. R. & Keynes, R. D. (1972). Isolation of acetyicholine receptors by chloroform—methanol extraction: Artifacts arising in use of LH-20 columns. Biochim. biophys. Acta 288, 241247.CrossRefGoogle Scholar
Libet, B. (1970). Generation of slow inhibitory and excitatory post-synaptic potentials. Fedn Proc. 29, 19451956.Google Scholar
Lindstrom, J. M., Singer, S. J. & Lennox, E. S. (1973). The effects of reducing and alkylating agents on the acetylcholine receptor activity of frog sartorius muscle. J. Membrane Biol. II, 217226.CrossRefGoogle Scholar
Lullman, H. (1971). In Smooth Muscle (ed. Bulbring, E., Brading, A. F., Jones, A. W. and Tomita, T.). London: Arnold.Google Scholar
Mackey, D. (1966). A new method for the analysis of drug-receptor interactions. Adv. Drug Res. 3, 119.Google Scholar
Maeno, T. (1966). Analysis of sodium and potassium conductances in the procaine endplate potential. J. Physiol., Lond. 183, 592606.CrossRefGoogle Scholar
Maeno, T., Edwards, C. & Hashimura, S. (1971). Difference in effects on endplate potentials between procaine and lidocaine as revealed by voltage clamp experiments. J. Neurophysiol. 34, 3246.CrossRefGoogle ScholarPubMed
Magazanik, L. G. & Potapova, T. V. (1969). Effect of changes inextra-cellular ionic medium on equilibrium potentials of the extrasynaptic membrane of denervated muscle. Biofizika 14, 658661.Google Scholar
Magleby, K. L. & Stevens, C. F. (1972 a). The effect of voltage on the time course of endplate currents. J. Physiol., Lond. 223, 151171.CrossRefGoogle Scholar
Magleby, K. L. & Stevens, C. F. (1972 b). A quantitative description of endplate currents. J. Physiol., Lond. 223, 173197.CrossRefGoogle Scholar
Mallart, A. & Trautmann, A. (1973). Ionic properties of the neuromuscular junction of the frog: effects of denervation and pH. J. Physiol., Lond. 234, 553567.CrossRefGoogle ScholarPubMed
Manalis, R. S. & Werman, R. (1969). Reversal potentials for iontophoretic potentials produced by several cholinomimetics. Physiologist 12, 292.Google Scholar
Martin, A. R. (1955). A further study of the statistical composition of theendplate potential. J. Physiol., Lond. 130, 114122.CrossRefGoogle ScholarPubMed
Masland, R. L. & Wigton, R. S. (1940). Nerve activity accompanying fasciculation produced by prostigmine. J. Neurophysiol. 3, 269.CrossRefGoogle Scholar
Matthews, E. K. & Peterson, O. H. (1973). Pancreatic acinar cells: ionic dependence of the membrane potential and acetylcholine-induced depolarization. J. Physiol., Lond. 231, 283295.CrossRefGoogle Scholar
Meunier, J.-C. & Changeux, J.-P. (1973). Comparison between theaffinities for reversible cholinergic ligands of a purified membrane bound state of the acetylcholine receptor protein from Electrophorus electricus. FEBS Lett. 32, 143148.CrossRefGoogle ScholarPubMed
Meunier, J.-C., Olsen, R. W., Menez, A., Fromageot, P., Boquet, P. & Changeux, J.-P. (1972). Some physical properties of the cholinergic protein from Electrophorus electricus revealed by tritiated α-toxin from Naja nigricollis venom. Biochemistry, N.Y. II, 12001210.CrossRefGoogle Scholar
Meunier, J.-C., Olsen, R., Menez, A., Morgat, J.-L., Fromageot, P., Ronseray, A.-M., Boquet, P. & Changeux, J.-P. (1971). Neurobiologie moléculaire; quelques propriétés physiques de la protéine réceptrice de l'acétylcholine etudiées a l'aide d'une neurotoxine radioactive. C. r. hebd. Séanc. Acad. Sci., Paris D 273, 595.Google Scholar
Miledi, R. (1960). Junctional and extra-junctional acetylcholine receptors in skeletal muscle fibres. J. Physiol., Lond. 151, 2430.CrossRefGoogle ScholarPubMed
Miledi, R., Molinoff, P. & Potter, L. T. (1971). Isolation of the cholinergic receptor protein of Torpedo electric tissue. Nature, Lond. 229, 554557.CrossRefGoogle ScholarPubMed
Miledi, R. & Potter, L. T. (1971). Acetylcholine receptors in muscle fibres. Nature, Lond. 233, 599603.CrossRefGoogle ScholarPubMed
Mittag, T. W. & Tormay, A. (1970). Disulphide bonds in nicotinic receptors. Fedn Proc. 29, 547.Google Scholar
Monod, J., Wyman, J. & Changeux, J.-P. (1965). On the nature of allosteric transitions: a plausible model. J. Molec. Biol. 12, 88118.CrossRefGoogle ScholarPubMed
Moore, J. W., Narahashi, T. & Shaw, T. I. (1967). An upper limit to the number of sodium channels in the nerve membrane. J. Physiol., Lond. 188, 99105.CrossRefGoogle Scholar
Moran, J. F. & Triggle, D. J. (1970). Approaches to the quantitation and isolation of pharmacological receptors. In Fundamental Concepts in Drug-receptor Interactions (ed. Danielli, J. F., Moran, J. F. and Triggle, D. J.). New York, London: Academic Press.Google Scholar
Mullins, L. J. (1968). A single channel or a dual channel mechanism for nerve excitation. J. gen. Physiol. 52, 550553.CrossRefGoogle ScholarPubMed
Nakamura, Y. S.Nakajima, S. & Grundfest, H. (1965). Analysis of spike electrogenesis and depolarizing K inactivation in electroplaques of Electrophorus electricus L. J. gen. Physiol. 49, 321349.CrossRefGoogle ScholarPubMed
Negrete, J., Castillo, J.Del, Escobar, I. & Yalikelevich, G. (1972). Spreading activation of endplate receptors by single transmitter quanta. Nature, New Biology 235, 158159.Google Scholar
Nishi, S. & Koketsu, K. (1960). Electrical properties and activities of single sympathetic neurons in frogs. J. cell comp. Physiol. 55, 1530.CrossRefGoogle ScholarPubMed
Nishi, S., Soeda, H. & Koketsu, K. (1969). Influence ofmembrane potential on the fast-acetylcholine potential of sympathetic ganglion cells. Life Sci. 8, 499505.CrossRefGoogle Scholar
Noble, D. (1966). Application of Hodgkin—Huxley equations to excitable tissues. Physiol. Rev. 46,150.CrossRefGoogle ScholarPubMed
Noble, D. & Tsien, R. W. (1968). The kinetics and rectifier properties of the slow potassium current in cardiac purkinje fibres. J. Physiol., Lond. 195, 185214.CrossRefGoogle ScholarPubMed
O' Brien, R. D., Eldefrawi, M. E. & Eldefrawi, A. T. (1972). Isolation of acetylcholine receptors. Ann. Rev. Pharmac. 12, 1934.CrossRefGoogle ScholarPubMed
O' Brien, R. D. & Gilmour, L. P. (1969). A muscarine-binding material in the electroplax and its relation to the acetylcholine receptor. I. Centrifugal assay. Proc. natn Acad. Sci., U.S.A. 63, 496503.CrossRefGoogle Scholar
O' Brien, R. D., Gilmour, L. P. & Eldefrawi, M. E. (1970). A muscarinebinding material in electroplax and its relation to the acetylcholine receptor.II. Dialysis assay. Proc. natn Acad. Sci. U.S.A. 65, 438455.CrossRefGoogle Scholar
Ochoa, E. L. M. & Robertis, E.De (1973). Receptor hydrophobic protein fraction from intestinal smooth muscle binding muscarinic ligands. Biochim. biophys. Acta 295, 528535.CrossRefGoogle Scholar
Ochoa, E., Fiszer, S. & Robertis, E.De (1972). Conductance changes produced by I -norepinephrine on lipid membranes containing a proteolipid from the bovine spleen capsule. Mol. Pharmacol. 8, 215221.Google ScholarPubMed
Olsen, R. W., Meunier, J.-C. & Changeux, J.-P. (1972). Progress in the purification of the cholinergic receptor protein from Electrophorus electricus by affinity chromatography. FEBS Lett. 28, 96100.CrossRefGoogle ScholarPubMed
Parisi, M., Reader, T. A. & De Robertis, E. (1972). Conductance properties of artificial lipidic membranes containing a proteolipid from Electrophorus. Response to cholinergic agents. J. gen. Physiol. 60, 454470.CrossRefGoogle ScholarPubMed
Parisi, M., Rivas, E. & De Robertis, E. (1971). Conductance changes produced by acetylcholine in lipidic membranes containing a proteolipid from Electrophorus. Science, N.Y. 172, 5657.CrossRefGoogle ScholarPubMed
Parker, R. B. & Waud, D. R. (1971). Pharmacological estimation of drug receptor dissociation constants. Statistical evaluation. I. Agonists. J. Pharmac.exp. Ther. 177, 112.Google ScholarPubMed
Paton, W. D. M. (1961). A theory of drug action based on the rate of drug receptor combination. Proc. R. Soc. Lond. B 154, 2169.Google Scholar
Paton, W. D. M. & Rang, H. P. (1965). The uptake of atropine and related drugs by intestinal smooth muscle of the guinea pig in relation to acetylcholine receptors. Proc. R. Soc. Lond. B 163, 144.Google ScholarPubMed
Paton, W. D. M. & Rang, H. P. (1966). A kinetic approach to themechanism of drug action. Adv. Drug Res. 3, 5780.Google Scholar
Patrick, J.Heinemann, S. F., Lindstrom, J., Schubert, D. & Steinbach, J. H. (1972). Appearance of acetylcholine receptors during differentiation of a myogenic cell line. Proc. natn. Acad. Sci. U.S.A. 69, 27622766.CrossRefGoogle ScholarPubMed
Patrick, J. & Lindstrom, J. (1973). Autoimmune response to acetylcholine receptor. Science, N. Y. 180, 871872.CrossRefGoogle ScholarPubMed
Peper, K. & McMahan, V. J. (1972). Distribution of acetyicholine receptors in the vicinity of nerve terminals on skeletal muscle of the frog. Proc. R. Soc. Lond. B 181, 431440.Google Scholar
Petersen, O. H. (1970). The dependence of the transmembrane salivary secretory potential on the external potassium and sodium concentration. J. Physiol., Lond. 210, 205215.CrossRefGoogle ScholarPubMed
Perutz, M. F. (1970). Stereochemistry of cooperative effects in haemoglobin. Nature, Lond. 228, 726734.CrossRefGoogle ScholarPubMed
Podleski, T. R. (1973). Cooperativity of the electroplax membrane. In Drug Receptors (ed. Rang, H. P.), pp. 135148.CrossRefGoogle Scholar
Porter, C. W., Barnard, E. A. & Chiu, T. H. (1973). Theultrastructural localization and quantitation of cholinergic receptors at the mouse motor endplate. J. Membrane Biol. 14, 383402.CrossRefGoogle ScholarPubMed
Porter, C. W., Chiu, T. H., Wieckowski, J. & Barnard, E. A. (1973). Types and locations of cholinergic receptor-like molecules in muscle fibres. Nature, New Biology 241, 37.Google ScholarPubMed
Potter, L. T. (1973). Acetylcholine receptors in vertebrate skeletal muscles and electric tissues. In Drug Receptors (ed. Rang, H. P.). London: Macmillan.Google Scholar
Potter, L. T. & Molinoff, P. B. (1972). Isolation of cholinergic receptor proteins. In Perspectives in Neuropharmacology (ed. Snyder, S. H.). Oxford University Press.Google Scholar
Raftery, M. A. (1973). Isolation of acetylcholine receptor-α-bungarotoxin complexes from Torpedo californica electroplax. Archs Biochem. Biophys. 154, 270276.CrossRefGoogle Scholar
Raftery, M. A., Schmidt, J. & Clark, D. G. (1972). Specificity of α-bungarotoxin binding to Torpedo californica electroplax. Archs Biochim. Biophys. 152, 882886.CrossRefGoogle Scholar
Raftery, M. A., Schmidt, I., Clark, D. G. & Colcott, R. G.(1971). Demonstration of a specific α-bungarotoxin binding component in Electrophorus electricus electroplax membranes. Biochem. Biophys. Res. Comm. 45, 16221629.CrossRefGoogle Scholar
Rahamimoff, R. & Colomo, F. (1967). Inhibitory action of sodiumions on transmitter release at the motor endplate. Nature, Lond. 215, 11741176.CrossRefGoogle Scholar
Rang, H. P. (1966). The kinetics of action of acetylcholine antagonists in smooth muscle. Proc. R. Soc. Lond. B 164, 488510.Google ScholarPubMed
Rang, H. P. (1967). The uptake of atropine and related compounds by smooth muscle. Ann. N.Y. Acad. Sci. 144, 756767.CrossRefGoogle Scholar
Rang, H. P. (1971). Drug receptors and their function. Nature, Lond. 231, 9196.CrossRefGoogle ScholarPubMed
Rang, H. P. (1973). Receptor mechanisms: Fourth Gaddum Memorial Lecture. Br. J. Pharmac. 48, 475495.CrossRefGoogle Scholar
Rang, H. P. & Ritter, J. M. (1969). A new kind of drug antagonism: evidence that agonists cause a molecular change in acetylcholine receptors. Mol. Pharmacol. 5, 394411.Google Scholar
Rang, H. P. & Ritter, J. M. (1970). The relationship between desensitization and the metaphilic effect at cholinergic receptors. Mol. Pharinacol. 6, 383390.Google ScholarPubMed
Rang, H. P. & Ritter, J. M. (1971). The effect of disulphide bond reduction on the properties of cholinergic receptors in chick muscle. Mol. Pharmacol. 7, 620631.Google ScholarPubMed
Reich, E. (1973). Purification and properties of a nicotinic receptor from Electrophorus electricus. Neurosci. Res. Progr. Bull II(3), 257262.Google Scholar
Reiter, M. J., Cowburn, D. A., Prives, J. M. & Karlin, A. (1972). Affinity labelling of the acetylcholine receptor in the electroplax: Electrophoretic separation in sodium dodecyl sulfate. Proc. natn. Acad. Sci. U.S.A. 69, 11681172.CrossRefGoogle Scholar
Riker, W. F. & Standaert, F. G. (1966). The action of facilitatory drugs on neuromuscular transmission. Ann. N.Y. Acad. Sci. 135, 164.CrossRefGoogle ScholarPubMed
Ritchie, J. M. (1967). On the role of acetylcholine on conduction in mammalian non-myelinated nerve fibers. Ann. N.Y. Acad. Sci. 144, 504516.CrossRefGoogle Scholar
Ross, D. H. & Triggle, D. J. (1972). Further differentiation ofcholinergic receptors in leech muscle. Biochem. Pharmacol. 21, 25332536.CrossRefGoogle Scholar
Rossum, J. M. van. (1966). Limitations of molecular pharmacology. Adv. Drug Res. 3, 189234.Google Scholar
Rubin, M. M. & Changeux, J.-P. (1966). On the nature of allosteric transitions: Implications of non-exclusive ligand binding. J. molec. Biol. 21, 265274.CrossRefGoogle ScholarPubMed
Ruiz-Manresa, F. & Grundfest, H. (1971). Synaptic electrogenesis in eel electroplaques. J. gen. Physiol. 57, 7192.CrossRefGoogle ScholarPubMed
Salpeter, M. M. & Eldefrawi, M. E. (1973). Sizes of endplate compartments, densities of acetylcholine receptor and other quantitative aspects of neuromuscular aransmission. J. Histochem. Cytochem. 21, 769778.CrossRefGoogle Scholar
Sastry, B. V. & Cheng, H. C. (1972). Dissociation constants of D- and L-lactoylcholines and related compounds at cholinergic receptors. J. Pharmac. exp.Ther. 180, 326339.Google Scholar
Schild, H. O. (1947). pA, a new scale for the measurement of drug antagonism. Br. J. Pharmac. 2, 189206.Google Scholar
Schmidt, J. & Raftery, M. A. (1973). Purification of acetylcholine receptors from Torpedo californica electroplax by affinity chromatography. Biochemistry, N.Y. 12, 852855.CrossRefGoogle ScholarPubMed
Schoffeniels, E. (1957). An isolated single electroplax preparation. II. Improved preparation for studying ion flux. Biochim. biophys. Acta 26, 585596.CrossRefGoogle ScholarPubMed
Schwartz, J. R., Ulbright, W. & Wagner, H.-H. (1973). The rate of action of tetrodotoxin on myelinated nerve fibres of xenopus laevis and Rana esculenta. J. Physiol., Lond. 233, 167194.CrossRefGoogle Scholar
Setekleiv, J. (1971). In Smooth Muscle (ed. Bulbring, E., Brading, A. F., Jones, A. W. and Tomita, T.). London: Arnold.Google Scholar
Silman, I. & Karlin, A. (1969). Acetylcholine receptor. Covalent attachment of depolarizing groups at the active site. Science, N.Y. 164, 14201421.CrossRefGoogle ScholarPubMed
Stalc, A. & Zupancic, A. O. (1972). Effect of α-bungarotoxin on acetylcholinesterase bound to mouse diaphragm endplates. Nature, New Biology 239, 9192.Google ScholarPubMed
Steinbach, A. B. (1968 a). Alteration by xylocaine (Lidocaine) and its derivatives of the time course of endplate potential. J. gen. Physiol. 52, 144161.CrossRefGoogle Scholar
Steinbach, A. B. (1968 b). A kinetic model for the action of xylocaine on receptors for acetylcholine. J. gen. Physiol. 52, 162180.CrossRefGoogle ScholarPubMed
Stephenson, R. P. (1956). A modification of receptor theory. Br. J. Pharmac. II, 379393.Google Scholar
Stephenson, R. P. & Ginsborg, B. L. (1969). Potentiation by an agonist. Nature, Lond. 222, 790791.CrossRefGoogle Scholar
Sugiyama, H., Benda, P., Meunier, J. C. & Changeux, J. P. (1973). Immunological characterization of the cholinergic receptor protein from Electrophorus electricus. FEBS Lett. 35, 124128CrossRefGoogle ScholarPubMed
Sytkowski, A. J., Vogel, Z. & Nirenberg, M. W. (1973). Development of acetylcholine receptor clusters on cultured muscle cells. Proc. natn. Acad. Sci. U.S.A. 70, 270274.CrossRefGoogle ScholarPubMed
Takagi, K., Akao, M. & Takahashi, A. (1965). Tritium labelled acetylcholine receptor in the smooth muscle of the small intestine of the dog. Life Sci. 4, 21652169.CrossRefGoogle Scholar
Takeuchi, N. (1963 a). Some properties of conductance changes at theendplate membrane during the action of acetylcholine. J. Physiol. Lond. 167, 128140.CrossRefGoogle ScholarPubMed
Takeuchi, N. (1963 b). Effects of calcium on the conductance change of the endplate membrane during the action of transmitter. J. Physiol., Lond. 167, 141155.CrossRefGoogle ScholarPubMed
Takeuchi, A. & Takeuchi, N. (1959). Active phase of frog'sendplate potential. J. Neurophysiol. 22, 395411.CrossRefGoogle ScholarPubMed
Takeuchi, A. & Takeuchi, N. (1960). On the permeability of endplate membrane during the action of transmitter. J. Physiol., Lond. 154, 5267.CrossRefGoogle ScholarPubMed
Takeuchi, A. & Takeuchi, N. (1967). Anion permeability of the inhibitory post-synaptic membrane of the crayfish neuromuscular junction. J. Physiol., Lond. 191, 575590.CrossRefGoogle ScholarPubMed
Takeuchi, A. & Takeuchi, N. (1969). A study of the action of picrotoxin on the inhibitory neuromuscular junction of the crayfish. J. Physiol., Lond. 205, 377391.CrossRefGoogle ScholarPubMed
Tauc, L. & Gerschenfeld, H. M. (1962). A cholinergic mechanism of inhibitory synaptic transmission in a molluscan nervous system. J. Neurophysiol. 25, 236262.CrossRefGoogle Scholar
Thron, C. D. (1973). On the analysis of pharmacological experiments in terms of an allosteric receptor model. Mol. Pharmacol. 9, 19.Google ScholarPubMed
Thron, C. D. & Waud, D. R. (1968). The rate of action of atropine. J. Pharmacol. exp. Ther. 160, 91105.Google ScholarPubMed
Trautwein, W. & Dudel, J. (1958). Zum Mechanismus der membranwirkung des acetylcholin au der herzmuskelfasser. Pflügers Arch. ges. Physiol. 266, 324334.CrossRefGoogle Scholar
Tsien, R. W. & Noble, D. (1969). A transition state theory approach to the kinetics of conductance changes in excitable membranes. J. Membrane Biol. I, 248272.CrossRefGoogle Scholar
Vasquez, C., Parisi, M. & Robertis, E.De (1971). Fine structure of ultrathin artificial membranes. I. Changes by acetylcholine addition in lipid proteolipid membranes. J. Membrane Biol. 6, 353367.CrossRefGoogle ScholarPubMed
Vogel, Z., Sytkowski, A. J. & Nirenberg, M. W. (1972). Acetylcholine receptors of muscle growth in vitro. Proc. natn. Acad. Sci. U.S.A. 69, 31803184.CrossRefGoogle Scholar
Volle, R. L. (1969). Ganglionic transmission. Ann. Rev. Pharmac. 9, 135146.CrossRefGoogle ScholarPubMed
Waser, P. G. (1960). The cholinergic receptor. J. Pharm. Pharmac. 12, 577594.CrossRefGoogle ScholarPubMed
Waser, P. G. (1967). Receptor localization by autroradiographic techniques. Ann. N.Y. Acad. Sci. 144, 737753.CrossRefGoogle Scholar
Waud, D. R. (1967). The rate of action of competitive neuromuscular blocking agents. J. Pharmacol. exp. Ther. 158, 99114.Google ScholarPubMed
Waud, D. R. (1968). Pharmacological receptors. Pharmac. Rev. 20, 4988.Google ScholarPubMed
Waud, D. R. (1969). On the measurement of the affinity of partial agonists for receptors. J. Pharmacol. exp. Ther. 170, 117122.Google ScholarPubMed
Weber, G., Borris, D. P., Robertis, E.De, Barrantes, F. J., Torre, J. L.La & Carlin, M. C. Llorente de (1971). The use of a cholinergic fluorescent probe for the study of the receptor proteolipid. Mol. Pharmacol. 7, 530537.Google Scholar
Weber, M., Menez, A., Fromageot, P., Boquet, P. & Changeux, J.-P. (1972). Effet des agents cholinergiques et des anesthésiques beaux sur la cinétique de liaison de la toxine α tritée de Naja nigricollis au récepteur cholinergique. C. r. hebd. Séanc. Acad. Sci., Paris, 274, 15751578.Google Scholar
Weight, F. F. & Votava, J. (1970). Slow synaptic excitation in sympathetic ganglion cells: evidence for synaptic inactivation of potassium conductance. Science, N.Y. 170, 755758.CrossRefGoogle ScholarPubMed
Werman, R. (1969). An electrophysiological approach to drug-receptor mechanisms. Comp. Biochem. Physiol. 30, 9971017.CrossRefGoogle ScholarPubMed
Whittam, R. & Guinnebault, M. (1960). The effect of blocking electrical activity on the efflux of potassium from electroplax. Biochim. biophys. Acta 45, 336347.CrossRefGoogle ScholarPubMed
Zwieten, P. A. (1968). The influence of cholinergic drugs on 86Rb efflux in isolated atrial tissue. Env. J. Pharmac. 5, 4955.CrossRefGoogle ScholarPubMed