Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 71
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Chi, Haixia Wang, Xiaoqiang Li, Jiqiang Ren, Hao and Huang, Fang 2016. Chaperonin-enhanced Escherichia coli cell-free expression of functional CXCR4. Journal of Biotechnology, Vol. 231, p. 193.


    Gruber, Ranit and Horovitz, Amnon 2016. Allosteric Mechanisms in Chaperonin Machines. Chemical Reviews, Vol. 116, Issue. 11, p. 6588.


    Hayer-Hartl, Manajit Bracher, Andreas and Hartl, F. Ulrich 2016. The GroEL–GroES Chaperonin Machine: A Nano-Cage for Protein Folding. Trends in Biochemical Sciences, Vol. 41, Issue. 1, p. 62.


    Huang, Fan Shen, Liangliang Wang, Jianzu Qu, Aoting Yang, Huiru Zhang, Zhenkun An, Yingli and Shi, Linqi 2016. Effect of the Surface Charge of Artificial Chaperones on the Refolding of Thermally Denatured Lysozymes. ACS Applied Materials & Interfaces, Vol. 8, Issue. 6, p. 3669.


    Kovermann, Michael Rogne, Per and Wolf-Watz, Magnus 2016. Protein dynamics and function from solution state NMR spectroscopy. Quarterly Reviews of Biophysics, Vol. 49,


    Marchenko, N. Yu. Sikorskaya, E.V. Marchenkov, V.V. Kashparov, I.A. and Semisotnov, G.V. 2016. Affinity chromatography of chaperones based on denatured proteins: Analysis of cell lysates of different origin. Protein Expression and Purification, Vol. 119, p. 117.


    Peng, Junhui and Zhang, Zhiyong 2016. Unraveling low-resolution structural data of large biomolecules by constructing atomic models with experiment-targeted parallel cascade selection simulations. Scientific Reports, Vol. 6, p. 29360.


    Yamamoto, Daisuke and Ando, Toshio 2016. Chaperonin GroEL–GroES Functions as both Alternating and Non-Alternating Engines. Journal of Molecular Biology, Vol. 428, Issue. 15, p. 3090.


    Ambrose, Andrew J. Fenton, Wayne Mason, Damian J. Chapman, Eli and Horwich, Arthur L. 2015. Unfolded DapA forms aggregates when diluted into free solution, confounding comparison with folding by the GroEL/GroES chaperonin system. FEBS Letters, Vol. 589, Issue. 4, p. 497.


    Anthis, Nicholas J. and Clore, G. Marius 2015. Visualizing transient dark states by NMR spectroscopy. Quarterly Reviews of Biophysics, Vol. 48, Issue. 01, p. 35.


    Burmann, Björn M. and Hiller, Sebastian 2015. Chaperones and chaperone–substrate complexes: Dynamic playgrounds for NMR spectroscopists. Progress in Nuclear Magnetic Resonance Spectroscopy, Vol. 86-87, p. 41.


    Burmann, Björn M. Holdbrook, Daniel A. Callon, Morgane Bond, Peter J. and Hiller, Sebastian 2015. Revisiting the Interaction between the Chaperone Skp and Lipopolysaccharide. Biophysical Journal, Vol. 108, Issue. 6, p. 1516.


    Casjens, Sherwood R. and Hendrix, Roger W. 2015. Bacteriophage lambda: Early pioneer and still relevant. Virology, Vol. 479-480, p. 310.


    Çetinbaş, Murat and Shakhnovich, Eugene I. 2015. Is Catalytic Activity of Chaperones a Selectable Trait for the Emergence of Heat Shock Response?. Biophysical Journal, Vol. 108, Issue. 2, p. 438.


    Chi, Haixia Wang, Xiaoqiang Li, Jiqiang Ren, Hao and Huang, Fang 2015. Folding of newly translated membrane protein CCR5 is assisted by the chaperonin GroEL-GroES. Scientific Reports, Vol. 5, p. 17037.


    Cho, Younhee Zhang, Xin Pobre, Kristine Faye R. Liu, Yu Powers, David L. Kelly, Jeffery W. Gierasch, Lila M. and Powers, Evan T. 2015. Individual and Collective Contributions of Chaperoning and Degradation to Protein Homeostasis in E. coli. Cell Reports, Vol. 11, Issue. 2, p. 321.


    Díaz-Villanueva, José Díaz-Molina, Raúl and García-González, Victor 2015. Protein Folding and Mechanisms of Proteostasis. International Journal of Molecular Sciences, Vol. 16, Issue. 8, p. 17193.


    Libich, David S. Tugarinov, Vitali and Clore, G. Marius 2015. Intrinsic unfoldase/foldase activity of the chaperonin GroEL directly demonstrated using multinuclear relaxation-based NMR. Proceedings of the National Academy of Sciences, Vol. 112, Issue. 29, p. 8817.


    Lim, Nicole C.H. and Jackson, Sophie E. 2015. Mechanistic Insights into the Folding of Knotted Proteins In Vitro and In Vivo. Journal of Molecular Biology, Vol. 427, Issue. 2, p. 248.


    Nisemblat, Shahar Yaniv, Oren Parnas, Avital Frolow, Felix and Azem, Abdussalam 2015. Crystal structure of the human mitochondrial chaperonin symmetrical football complex. Proceedings of the National Academy of Sciences, Vol. 112, Issue. 19, p. 6044.


    ×

Chaperonin-mediated protein folding: using a central cavity to kinetically assist polypeptide chain folding

  • Arthur L. Horwich (a1) (a2) and Wayne A. Fenton (a2)
  • DOI: http://dx.doi.org/10.1017/S0033583509004764
  • Published online: 01 July 2009
Abstract
Abstract

The chaperonin ring assembly GroEL provides kinetic assistance to protein folding in the cell by binding non-native protein in the hydrophobic central cavity of an open ring and subsequently, upon binding ATP and the co-chaperonin GroES to the same ring, releasing polypeptide into a now hydrophilic encapsulated cavity where productive folding occurs in isolation. The fate of polypeptide during binding, encapsulation, and folding in the chamber has been the subject of recent experimental studies and is reviewed and considered here. We conclude that GroEL, in general, behaves passively with respect to its substrate proteins during these steps. While binding appears to be able to rescue non-native polypeptides from kinetic traps, such rescue is most likely exerted at the level of maximizing hydrophobic contact, effecting alteration of the topology of weakly structured states. Encapsulation does not appear to involve ‘forced unfolding’, and if anything, polypeptide topology is compacted during this step. Finally, chamber-mediated folding appears to resemble folding in solution, except that major kinetic complications of multimolecular association are prevented.

Copyright
Corresponding author
*Author for correspondence: Dr. A. L. Horwich, Howard Hughes Medical Institute, Yale University School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, CT 06510, USA. Tel.: 203-737-4431; Fax: 203-737-1761; Email: arthur.horwich@yale.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

C. B. Anfinsen (1973). Principles that govern the folding of protein chains. Science 181, 223230.

A. C. Apetri & A. L. Horwich (2008). Chaperonin chamber accelerates protein folding through passive action of preventing aggregation. Proceedings of the National Academy of Sciences USA 105, 1735117355.

N. Bhutani & J. B. Udgaonkar (2000). A thermodynamic coupling mechanism can explain the GroEL-mediated acceleration of the folding of barstar. Journal of Molecular Biology 297, 10371044.

K. Braig , Z. Otwinowski , R. Hegde , D. Boisvert , A. Joachimiak , A. L. Horwich & P. B. Sigler (1994). The crystal structure of the bacterial chaperonin GroEL at 2·8 Å. Nature 371, 578586.

K. Braig , M. Simon , F. Furuya , J. F. Hainfeld & A. L. Horwich (1993). A polypeptide bound to the chaperonin GroEL is localized within a central cavity. Proceedings of the National Academy of Sciences USA 90, 39783982.

A. Brinker , G. Pfeifer , M. J. Kerner , D. J. Naylor , F. U. Hartl & M. Hayer-Hartl (2001). Dual function of protein confinement in chaperonin-assisted protein folding. Cell 107, 223233.

J. Buchner , M. Schmidt , M. Fuchs , R. Jaenicke , R. Rudolph , F. X. Schmid & T. Kiefhaber (1991). GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30, 15861591.

A. M. Buckle , R. Zahn & A. R. Fersht (1997). A structural model for GroEL-polypeptide recognition. Proceedings of the National Academy of Sciences USA 94, 35713575.

E. Chapman , G. W. Farr , W. A. Fenton & A. L. Horwich (2008). Requirement for binding multiple ATP's to convert a GroEL ring to the folding-active state. Proceedings of the National Academy of Sciences USA 105, 1920519210.

E. Chapman , G. W. Farr , R. Usaite , K. Furtak , W. A. Fenton , E. R. Hondorp , R. G. Matthews , S. G. Wolf , J. R. Yates , M. Pypaert & A. L. Horwich (2006). Global aggregation of newly-translated proteins in an E. coli strain deficient of the chaperonin GroEL. Proceedings of the National Academy of Sciences USA 103, 1544515450.

C. Chaudhry , G. W. Farr , M. J. Todd , H. S. Rye , A. T. Brunger , P. D. Adams , A. L. Horwich & P. B. Sigler (2003). Role of the γ-phosphate of ATP in triggering protein folding by GroEL–GroES: function, structure, and energetics. EMBO Journal 22, 48774887.

T. K. Chaudhuri , G. W. Farr , W. A. Fenton , S. Rospert & A. L. Horwich (2001). GroEL–GroES-mediated folding of a protein too large to be encapsulated. Cell 107, 235246.

J. Chen , S. Walter , A. L. Horwich & D. L. Smith (2001). Folding of malate dehydrogenase inside the GroEL–GroES cavity. Nature Structural Biology 8, 721728.

L. Chen & P. B. Sigler (1999). The crystal structure of a GroEL/peptide complex: plasticity as a basis for substrate diversity. Cell 99, 757768.

S. Chen , A. M. Roseman , A. S. Hunter , S. P. Wood , S. G. Burston , N. A. Ranson , A. R. Clarke & H. R. Saibil (1994). Location of a folding protein and shape changes in GroEL–GroES complexes imaged by cryo-electron microscopy. Nature 371, 261264.

M. Y. Cheng , F. U. Hartl , J. Martin , R. A. Pollock , F. Kalousek , W. Neupert , E. M. Hallberg , R. L. Hallberg & A. L. Horwich (1989). Mitochondrial heat shock protein HSP60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337, 620625.

D. K. Clare , P. J. Bakkes , H. van Heerikhuizen , S. M. van der Vies & H. R. Saibil (2009). Chaperonin complex with a newly folded protein encapsulated in the folding chamber. Nature 457, 107110.

M. J. Cliff , C. Limpkin , A. Cameron , S. G. Burston & A. R. Clarke (2006). Elucidation of steps in the capture of a protein substrate for efficient encapsulation by GroE. Journal of Biological Chemistry 281, 2126621275.

R. J. Deshaies , B. D. Koch , M. Werner-Washburne , E. A. Craig & R. Schekman (1988). A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332, 800805.

N. Elad , G. W. Farr , D. K. Clare , E. V. Orlova , A. L. Horwich & H. R. Saibil (2007). Topologies of a substrate protein bound to the chaperonin GroEL. Molecular Cell 26, 415426.

G. W. Farr , W. A. Fenton & A. L. Horwich (2007). Perturbed ATPase activity and not ‘close confinement’ of substrate in the cis cavity affects rates of folding by tail-multipled GroEL. Proceedings of the National Academy of Sciences USA 104, 53425347.

S. Falke , F. Tama , C. L. Brooks 3rd, E. P. Gogol & M. T. Fisher (2005). The 13 angstroms structure of a chaperonin GroEL–protein substrate complex by cryo-electron microscopy. Journal of Molecular Biology 348, 219230.

G. W. Farr , K. Furtak , M. C. Rowland , N. A. Ranson , H. R. Saibil , T. Kirchhausen & A. L. Horwich (2000). Multivalent binding of non-native substrate proteins by the chaperonin GroEL. Cell 100, 561573.

W. A. Fenton , Y. Kashi , K. Furtak & A. L. Horwich (1994). Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371, 614619.

P. Gervasoni , W. Staudenmann , P. James , P. Gehrig & A. Plückthun (1996). β-lactamase binds to GroEL in a conformation highly protected against hydrogen/deuterium exchange. Proceedings of the National Academy of Sciences USA 93, 1218912194.

P. Gervasoni , W. Staudenmann , P. James & A. Plückthun (1998). Identification of the binding surface on β-lactamase for GroEL by limited proteolysis and MALDI-mass spectrometry. Biochemistry 37, 1166011669.

M. S. Goldberg , J. Zhang , S. Sondek , C. R. Matthews , R. O. Fox & A. L. Horwich (1997). Native-like structure of a protein-folding intermediate bound to the chaperonin GroEL. Proceedings of the National Academy of Sciences USA 94, 10801085.

P. Goloubinoff , J. T. Christeller , A. A. Gatenby & G. H. Lorimer (1989). Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and MgATP. Nature 342, 884889.

M. Groß , C. V. Robinson , M. Mayhew , F. U. Hartl & S. E. Radford (1996). Significant hydrogen exchange protection in GroEL-bound DHFR is maintained during iterative rounds of substrate cycling. Protein Science 5, 25062513.

F. Hillger , D. Hänni , D. Nettels , S. Geister , M. Grandin , M. Textor & B. Schuler (2008). Probing protein–chaperone interactions with single-molecule fluorescence spectroscopy. Angewandte Chemie 47, 61846188.

J. Hinnerwisch , W. A. Fenton , G. W. Farr , K. Furtak & A. L. Horwich (2005). Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation. Cell 121, 10291041.

R. Horst , E. B. Bertelsen , J. Fiaux , G. Wider , A. L. Horwich & K. Wüthrich (2005). Direct NMR observation of a substrate protein bound to the chaperonin GroEL. Proceedings of the National Academy of Sciences USA 102, 1274812753.

R. Horst , W. A. Fenton , S. W. Englander , K. Wüthrich & A. L. Horwich (2007). Folding trajectories of human dihydrofolate reductase inside the GroEL–GroES chaperonin cavity and free in solution. Proceedings of the National Academy of Sciences USA 104, 2078820792.

A. L. Horwich , G. W. Farr & W. A. Fenton (2006). GroEL–GroES-mediated protein folding. Chemical Reviews 106, 19171930.

T. Inobe , M. Arai , M. Nakao , K. Ito , K. Kamagata , T. Makio , Y. Amemiya , H. Kihara & K. Kuwajima (2003). Equilibrium and kinetics of the allosteric transition of GroEL studied by solution X-ray scattering and fluorescence spectroscopy. Journal of Molecular Biology 327, 183191.

L. S. Itzhaki , D. E. Otzen & A. R. Fersht (1995). Nature and consequences of GroEL-protein interactions. Biochemistry 34, 1458114587.

Y. Kawata , M. Kawagoe , K. Hongo , T. Miyazaki , T. Higurashi , T. Mizobata & J. Nagai (1999). Functional communications between the apical and equatorial domains of GroEL through the intermediate domain. Biochemistry 38, 1573115740.

Y. Kipnis , N. Papo , G. Haran & A. Horovitz (2007). Concerted ATP-induced allosteric transitions in GroEL facilitate release of protein substrate domains in an all-or-none manner. Proceedings of the National Academy of Sciences USA 104, 31193124.

Y. Li , X. Gao & L. Chen (2009). GroEL recognizes an amphipathic helix and binds to the hydrophobic side. Journal of Biological Chemistry 284, 43244331.

Z. Lin & H. S. Rye (2004). Expansion and compression of a protein folding intermediate by GroEL. Molecular Cell 16, 2334.

Z. Lin , F. P. Schwarz & E. Eisenstein (1995). The hydrophobic nature of GroEL-substrate binding. Journal of Biological Chemistry 270, 10111014.

Z. Lin , Z. Madan & H. S. Rye (2008). GroEL stimulates protein folding through forced unfolding. Nature Structural & Molecular Biology 15, 303311.

D. Madan , Z. Lin & H. S. Rye (2008). Triggering protein folding within the GroEL–GroES complex. Journal of Biological Chemistry 283, 3200332013.

M. Mayhew , A. C. R. da Silva , J. Martin , H. Erdjument-Bromage , P. Tempst & F. U. Hartl (1996). Protein folding in the central cavity of the GroEL–GroES chaperonin complex. Nature 379, 420426.

N. F. McLennan , S. McAteer & M. Masters (1994). The tail of a chaperonin: the C-terminal region of Escherichia coli GroEL protein. Molecular Microbiology 14, 309321.

T. Miyazaki , T. Yoshimi , Y. Furutsu , K. Hongo , T. Mizobata , M. Kanemori & Y. Kawata (2002). GroEL-substrate-GroES ternary complexes are an important transient intermediate of the chaperonin cycle. Journal of Biological Chemistry 277, 5062150628.

F. Motojima , C. Chaudhry , W. A. Fenton , G. W. Farr & A. L. Horwich (2004). Substrate polypeptide presents a load on the apical domains of the chaperonin GroEL. Proceedings of the National Academy of Sciences USA 101, 1500515012.

T. Nojima , S. Murayama , M. Yoshida & F. Motojima (2008). Determination of the number of active GroES subunits in the fused heptamer GroES required for interactions with GroEL. Journal of Biological Chemistry 283, 1838518392.

A. Ojha , M. Anand , A. Bhatt , L. Kremer , W. R. Jacobs Jr. & G. F. Hatfull (2005). GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123, 861873.

A. Okazaki , T. Ikura , K. Nikaido & K. Kuwajima (1994). The chaperonin GroEL does not recognize apo-α-lactalbumin in the molten globule state. Nature Structural Biology 1, 439446.

J. Ostermann , A. L. Horwich , W. Neupert & F. U. Hartl (1989). Protein folding in mitochondria requires complex formation with HSP60 and ATP hydrolysis. Nature 341, 125130.

N. Papo , Y. Kipnis , G. Haran & A. Horovitz (2008). Concerted release of substrate domains from GroEL by ATP is demonstrated with FRET. Journal of Molecular Biology 380, 717725.

E. S. Park , W. A. Fenton & A. L. Horwich (2005). No evidence for a forced-unfolding mechanism during ATP/GroES binding to substrate-bound GroEL: no observable protection of metastable Rubisco intermediate, or GroEL-bound Rubisco from tritium exchange. FEBS Letters 579, 11831186.

H. R. Pelham (1986). Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46, 959961.

D. Peralta , D. J. Hartman , N. J. Hoogenraad & P. B. Høj (1994). Generation of a stable folding intermediate which can be rescued by the chaperonins GroEL and GroES. FEBS Letters 339, 4549.

M. Preuss , J. P. Hutchinson & A. D. Miller (1999). Secondary structure forming propensity coupled with amphiphilicty is an optimal motif in a peptide, or protein for association with chaperonin 60 (GroEL). Biochemistry 38, 1027210286.

N. A. Ranson , S. G. Burston & A. R. Clarke (1997). Binding, encapsulation and ejection: substrate dynamics during a chaperonin-assisted folding reaction. Journal of Molecular Biology 266, 656664.

N. A. Ranson , N. J. Dunster , S. G. Burston & A. R. Clarke (1995). Chaperonins can catalyse the reversal of early aggregation steps when a protein misfolds. Journal of Molecular Biology 250, 581586.

N. A. Ranson , G. W. Farr , A. M. Roseman , B. Gowen , W. A. Fenton , A. L. Horwich & H. R. Saibil (2001). ATP-bound states of GroEL captured by cryo-electron microscopy. Cell 107, 869879.

D. S. Reading , R. L. Hallberg & A. M. Myers (1989). Characterization of the yeast HSP60 gene coding for a mitochondrial assembly factor. Nature 337, 655659.

D. Rivenzon-Segal , S. G. Wolf , L. Shimon , K. R. Willison & A. Horovitz (2005). Sequential ATP-induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 revealed by EM analysis. Nature Structural & Molecular Biology 12, 233237.

C. V. Robinson , M. Gross , S. J. Eyles , J. J. Ewbank , M. Mayhew , F. U. Hartl , C. M. Dobson & S. E. Radford (1994). Conformation of GroEL-bound alpha-lactalbumin probed by mass spectrometry. Nature 372, 646651.

H. S. Rye , S. G. Burston , W. A. Fenton , J. M. Beechem , Z. Xu , P. B. Sigler & A. L. Horwich (1997). Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 388, 792798.

H. S. Rye , A. M. Roseman , K. Furtak , W. A. Fenton , H. R. Saibil & A. L. Horwich (1999). GroEL–GroES cycling: ATP and non-native polypeptide direct alternation of folding-active rings. Cell 97, 325338.

H. R. Saibil , D. Zheng , A. M. Roseman , A. S. Hunter , G. M. Watson , S. Chen , A. Auf der Mauer , B. P. O'Hara , S. P. Wood , N. H. Mann , L. K. Barnett & R. J. Ellis (1993). ATP induces large quaternary rearrangements in a cage-like chaperonin structure. Current Biology: CB 3, 265273.

R. T. Sauer , D. N. Bolon , B. M. Burton , R. E. Burton , J. M. Flynn , R. A. Grant , G. L. Hersch , S. A. Joshi , J. A. Kenniston , I. Levchenko , S. B. Neher , E. S. Oakes , S. M. Siddiqui , D. A. Wah & T. A. Baker (2004). Sculpting the proteome with AAA(+) proteases and disassembly machines. Cell 119, 918.

S. Sharma , K. Chakraborty , B. K. Müller , N. Astola , Y. C. Tang , D. C. Lamb , M. Hayer-Hartl & F. U. Hartl (2008). Monitoring protein conformation along the pathway of chaperonin-assisted folding. Cell 133, 142153.

F. Shewmaker , K. Maskos , C. Simmerling & S. J. Landry (2001). The disordered mobile loop of GroES folds into a defined β-hairpin upon binding GroEL. Journal of Biological Chemistry 276, 3125731264.

M. Shtilerman , G. H. Lorimer & S. W. Englander (1999). Chaperonin function: folding by forced unfolding. Science 284, 822825.

K. E. Smith & M. T. Fisher (1995). Interactions between the GroE chaperonins and rhodanese. Multiple intermediates and release and rebinding. Journal of Biological Chemistry 270, 2151721523.

R. Sprangers & L. E. Kay (2007). Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445, 618622.

H. Taguchi & M. Yoshida (1995). Chaperonin releases the substrate protein in a form with tendency to aggregate and ability to rebind to chaperonin. FEBS Letters 359, 195198.

Y.-C. Tang , H.-C. Chang , A. Roeben , D. Wischnewski , N. Wischnewski , M. J. Kerner , F. U. Hartl & M. Hayer-Hartl (2006). Structural features of the GroEL–GroES nano-cage required for rapid folding of encapsulated protein. Cell 125, 903914.

M. Taniguchi , T. Yoshimi , K. Hongo , T. Mizobata & Y. Kawata (2004). Stopped-flow fluorescent analysis of the conformational changes in the GroEL apical domain. Journal of Biological Chemistry 279, 1636816376.

P. Thiyagarajan , S. J. Henderson & A. Joachimiak (1996). Solution structures of GroEL and its complex with rhodanese from small-angle neutron scattering. Structure 4, 7988.

G. Tian , I. E. Vainberg , W. D. Tap , S. A. Lewis & N. J. Cowan (1995). Specificity in chaperonin-mediated protein folding. Nature 375, 250253.

M. J. Todd , G. H. Lorimer & D. Thirumalai (1996). Chaperonin-facilitated protein folding: optimization of rate and yield by an iterative annealing mechanism. Proceedings of the National Academy of Sciences USA 93, 40304035.

M. J. Todd , P. V. Viitanen & G. H. Lorimer (1994). Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science 265, 659666.

P. V. Viitanen , A. A. Gatenby & G. H. Lorimer (1992). Purified chaperonin 60 (groEL) interacts with the nonnative states of a multitude of Escherichia coli proteins. Protein Science 1, 363369.

P. V. Viitanen , T. H. Lubben , J. Reed , P. Goloubinoff , D. P. O'Keefe & G. H. Lorimer (1990). Chaperonin-facilitated refolding of ribulosebisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) are K+ dependent. Biochemistry 29, 56655671.

S. Walter , G. H. Lorimer & F. X. Schmid (1996). A thermodynamic coupling mechanism for GroEL-mediated unfolding. Proceedings of the National Academy of Sciences USA 93, 94259430.

W. Wang , F. Hwa-Ping , S. J. Landry , J. Maxwell & L. M. Gierasch (1999). Basis of substrate binding by the chaperonin GroEL. Biochemistry 38, 1253712546.

J. S. Weissman , C. M. Hohl , O. Kovalenko , S. Chen , K. Braig , H. R. Saibil , W. A. Fenton & A. L. Horwich (1995). Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES. Cell 83, 577587.

J. S. Weissman , Y. Kashi , W. A. Fenton & A. L. Horwich (1994). GroEL-mediated protein folding proceeds by multiple rounds of release and rebinding of non-native forms. Cell 78, 693702.

J. S. Weissman , H. S. Rye , W. A. Fenton , J. M. Beechem & A. L. Horwich (1996). Characterization of the active intermediate of a GroEL–GroES-mediated folding reaction. Cell 84, 481490.

O. Yifrach & A. Horovitz (1995). Nested cooperativity in the ATPase activity in the oligomeric chaperonin GroEL. Biochemistry 34, 97169723.

O. Yifrach & A. Horovitz (1998). Transient kinetic analysis of adenosine 5′ triphosphate binding-induced conformational changes in the allosteric chaperonin GroEL. Biochemistry 37, 70837088.

R. Zahn & A. Plückthun (1994). Thermodynamic partitioning model for hydrophobic binding of polypeptides by GroEL: II. GroEL recognizes thermally unfolded mature β-lactamase. Journal of Molecular Biology 242, 165174.

R. Zahn , C. Spitzfaden , M. Ottiger , K. Wüthrich & A. Plückthun (1994). Destabilization of the complete protein secondary structure on binding to the chaperone GroEL. Nature 368, 261265.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Quarterly Reviews of Biophysics
  • ISSN: 0033-5835
  • EISSN: 1469-8994
  • URL: /core/journals/quarterly-reviews-of-biophysics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×