Skip to main content Accessibility help
×
Home

Damage to proteins due to the direct action of ionizing radiation

  • E. S. Kempner (a1)

Extract

Proteins exposed to ionizing radiation suffer both reversible and irreversible effects. Reversible effects are defined as those which disappear in a short period of time after the removal of the radiation field and without further treatment of the sample. Irreversible effects are those which cause a permanent alteration in the structure of a protein.

Copyright

References

Hide All
Alexander, P. & Hamilton, L. D. G. (1960). Irradiation of proteins in the solid state. II. chemical changes produced in bovine serum albumin. Radiation Res. 13, 214233.
Andersen, J. P. & Vilsen, B. (1988). Radiation inactivation analysis of sarcoplasmic reticulum Ca-ATPase in membrane-bound form and in detergent-solubilized monomeric states. FEBS Lett. 234, 120126.
Angelides, K. J., Nutter, T. J., Elmer, L. W. & Kempner, E. S. (1985). Functional unit size of the neurotoxin receptors on the voltage-dependent sodium channel. J. biol. Chem. 260, 34313439.
Aronson, D. L. & Preiss, J. W. (1962). Molecular weights of human prothrombin and thrombin by electron irradiation. Radiation Res. 16, 138143.
Barber, M. J., Solomonson, L. P. & McCreery, M. J. (1987). Radiation inactivation of hepatic sulfite oxidase. Arch. Biochem. Biophys. 256, 260267.
Beauregard, G., Maret, A., Salvayre, R. & Potier, M. (1987). The radiation inactivation method as a tool to study structure-function relationships in proteins. Methods in biochem. Analysis 32, 313343.
Beliveau, R., Demeule, M., Ibnoul-Khatib, H., Bergeron, M., Beauregard, G. & Potier, M. (1988). Radiation-inactivation studies on brush-border-membrane vesicles. Biochem. J. 252, 807813.
Boldyrev, A. A., Lopina, O. D. & Fedosova, N. U. (1990). Na, K-ATPase: radiation inactivation studies. Biochem. International 21, 4552.
Bolger, G. T., Skolnick, P. & Kempner, E. S. (1989). Radiation inactivation reveals discrete cation binding sites that modulate dihydropyridine binding sites. Molec. Pharmacol. 36, 327332.
Bowman, B. J., Berenski, C. J. & Jung, C. Y. (1985). Size of the plasma membrane H+-ATPase from Neurospora crassa determined by radiation inactivation and comparison with the sarcoplasmic reticulum Ca2+-ATPase from skeletal muscle. J. biol. Chem. 260, 87268730.
Boyer, T. D. & Kempner, E. S. (1992). Effect of subunit interactions on enzymatic activity of glutathione S-transferases: a radiation inactivation study. Anal. Biochem. 207, 5157.
Bundo-Morita, K., Gibson, S. & Lenard, J. (1988). Radiation inactivation analysis of fusion and hemolysis by vesicular stomatitis virus. Virology 163, 622624.
Chamberlain, B. K., Berenski, C. J., Jung, C. Y. & Fleischer, S. (1983). Determination of the oligomeric structure of the Ca2+ pump protein in canine cardiac sarcoplasmic reticulum membranes using radiation inactivation analysis. J. biol. Chem. 258, 1199712001.
Cheung, D. T., Perelman, N., Tong, D. & Nimni, M. E. (1990). The effect of gammairradiation on collagen molecules, isolated α-chains, and crosslinked native fibers. J. Biomed. mat. Res. 24, 581589.
Coggins, J. R., Boocock, M. R., Campbell, M. S., Chaudhuri, S., Lambert, J. M., Lewendon, A., Mousdale, D. M. & Smith, D. D. S. (1985). Functional domains involved in aromatic amino acid biosynthesis. Biochem. Soc. Trans. 13, 299303.
Cuppoletti, J., Goldinger, J., Kang, B., Jo, I., Berenski, C. & Jung, C. Y. (1985). Anion carrier in the human erythrocyte exists as a dimer. J. biol. Chem. 260, 1571415717.
Dose, K., Risi, S. & Rauchfuss, H. (1966). Veranderung von aminosauren und aktivitat bei rontgenbestrahlung von krystallisiertem lysozym. Biophysik 3, 202206.
Edwards, P. A., Kempner, E. S., Lan, S.-F. & Erickson, S. K. (1985). Functional size of rat hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase as determined by radiation inactivation. J. biol. Chem. 260, 1027810282.
Fewtrell, C., Kempner, E., Poy, G. & Metzger, H. (1981). Unexpected findings from target analysis of immunoglobin E and its receptor. Biochemistry 20, 65896594.
Fujita-Yamaguchi, Y., Harmon, J. T. & Kathuria, S. (1989). Radiation inactivation experiments predict that a large aggregate form of the insulin receptor is a highly active tyrosine-specific kinase. Biochemistry 28, 45564563.
Garrison, W. M. (1987). Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chem. Revs. 87, 381398.
Gibson, S., Bundo-Morita, K., Portner, A. & Lenard, J. (1988). Fusion of a sendai mutant deficient in HN protein (ts271) with cardiolipin liposomes. Virology 163, 226229.
Haigler, H. T., Woodbury, D. J. & Kempner, E. S. (1985). Radiation inactivation of ricin occurs with transfer of destructive energy across a disulfide bridge. Proc. natl Acad. Sci. USA 62, 53575359.
Harmon, J. T., Nielsen, T. B. & Kempner, E. S. (1985). Molecular weight determinations from radiation inactivation. Methods in Enzymol. 117, 6594.
Hill, D. J. T., Garrett, R. W., Ho, S. Y., O'Donnell, J. H., O'Sullivan, P. W. & Pomery, P. J. (1981). Radiolysis of model polypeptides in the solid state: radiation sensitivity and side chain structure. Rad. Chem. Phys. 17, 163171.
Hill, D. J. T., Ho, S. Y., O'Donnell, J. H., O'Sullivan, P. W. & Pomery, P. J. (19801981). The mechanism of radiation degradation of polypeptides. Polymer Degradation and Stability 3, 8386.
Horowits, R., Kempner, E. S., Bisher, M. E. & Podolsky, R. J. (1986). A physiological role for titin and nebulin in skeletal muscle. Nature 323, 160164.
Hymel, L., Maurer, A., Berenski, C., Jung, C. Y. & Fleischer, S. (1984). Target size of calcium pump protein from skeletal muscle sarcoplasmic reticulum. J. biol. Chem. 259, 48904895.
Jensen, J. & Norby, J. G. (1988). Membrane-bound Na, K-ATPase: target size and radiation inactivation size of some of its enzymatic reactions. J. biol. Chem. 263, 1806318070.
Jhun, E., Jhun, B. H., Jones, L. R. & Jung, C. Y. (1991). Direct effects of ionizing radiation on integral membrane proteins. J. biol. Chem. 266, 94039407.
Jung, C. Y. (1984). Molecular weight determination by radiation inactivation. In Receptor Biochemistry and Methodology, vol. 3 (ed. Venter, J. C. & Harrison, L. C.), pp. 193208. New York: A. R. Liss.
Jung, H. & Schussler, H. (1968). Zur Strahleninaktivierung von Ribonuclease. III. Aminosauren-Veranderungennach Bestrahlung in Trockenen. Z. Naturforsch. 23 b, 934943.
Karlish, S. J. D. & Kempner, E. S. (1984). Minimal functional unit for transport and enzyme activities of (Na+ + K+)-ATPase as determined by radiation inactivation. Biochim. biophys. Acta 776, 288298.
Kasche, V. (1971). Specific protein–protein interaction and its application in studies on radiation-induced protein modification. Uppsala dissertations from the Faculty of Science, vol. 2. Acta Universitatis Upsaliensis.
Kempner, E. S. & Fleischer, S. (1989). Radiation inactivation of membrane components and molecular mass determination by target analysis. Methods in Enzymol. 172, 410439.
Kempner, E. S. & Miller, J. H. (1983). Radiation inactivation of glutamate dehydrogenase hexamer: lack of energy transfer between subunits. Science 222, 586589.
Kempner, E. S. & Miller, J. H. (1989). Radiation-damaged tyrosinase molecules are inactive. Biophys. J. 55, 159162.
Kempner, E. S. & Miller, J. H. (1990). Direct effects of radiation on the avidin-biotin system, j. biol. Chem. 265, 1577615781.
Kempner, E. S. & Verkman, A. S. (1988). Direct effects of ionizing radiation unique to macromolecules. Radiat. Phys. Chem. 32, 341347.
Kempner, E. S., Cole, K. W. & Gaertner, F. H. (1982). The functional unit of the arom conjugate in Neurospora. J. biol. Chem. 257, 89198921.
Kempner, E. S., Miller, J. H. & McCreery, M. J. (1986). Radiation target analysis of glycoproteins. Anal. Biochem. 156, 140146.
le Maire, M., Thauvette, L., De Foresta, B., Viel, A., Beauregard, G. & Potier, M. (1990). Effects of ionizing radiations on proteins. Biochem. J. 267, 431439.
Lummis, S. C. R., Ellory, J. C. & Sattelle, D. B. (1988). The cross-linking reagent dimethyl suberimidate modifies the target size of an insect nervous system nicotinic acetylcholine receptor. Neuroscience Letters 87, 145150.
McCormick, J. I., Jette, M., Potier, M., Beliveau, R. & Johnstone, R. M. (1991). Molecular size of a Na+-dependent amino acid transporter in Ehrlich ascites cell plasma membranes estimated by radiation inactivation. Biochemistry 30, 37043709.
McGrew, S. G., Boucek, R. J. Jr., McIntyre, J. O., Jung, C. Y. & Fleischer, S. (1987). Target size of the ryanodine receptor from junctional terminal cisternae of sarcoplasmic reticulum. Biochemistry 26, 31833187.
McGrew, S. G., Inui, M., Chadwick, C. C., Boucek, R. J. Jr., Jung, C. Y. & Fleischer, S. (1989). Comparison of the calcium release channel of cardiac and skeletal muscle sarcoplasmic reticulum by target inactivation analysis. Biochemistry 28, 13191323.
McIntyre, J. O., Churchill, P., Maurer, A., Berenski, C. J., Jung, C. Y. & Fleischer, S. (1983). Target size of D-β-hydroxybutyrate dehydrogenase. J. biol. Chem. 258, 953959.
Morishima, H. & Hatano, H. (1975). Electron paramagnetic resonance of several polyamino acids gamma-irradiated at 77 K. Bull. Inst. Chem. Res. Kyoto 53, 1522.
Nakamura, Y., Ogiwara, Y. & Phillips, G. O. (1985). Free radical formation and degradation of cellulose by ionizing radiations. Polym. Photochem. 6, 135159.
Ness, G. C., McCreery, M. J., Sample, C. E., Smith, M. & Pendleton, L. C. (1985). Sulfhydryl–disulfide forms of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase. J. biol. Chem. 260, 1639516399.
Norby, J. G. & Jensen, J. (1989). A model for the step-wise radiation inactivation of the α2-dimer of Na, K-ATPase. J. biol. Chem. 264, 1954819558.
Norby, J. G. & Jensen, J. (1991). Functional significance of the oligomeric structure of the Na, K pump from radiation inactivation and ligand binding. In The Sodium Pump: Structure, Mechanism and Regulation (ed. Kaplan, J. H. & De Weer, P.), pp. 173188. New York: Rockefeller Univ. Press.
Olivecrona, T., Bengtsson-Olivecrona, G., Osborne, J. C. Jr. & Kempner, E. S. (1985). Molecular size of bovine lipoprotein lipase as determined by radiation inactivation. J. biol. Chem. 260, 68886891.
Potier, M., Thauvette, L., Michaud, L., Giroux, S. & Beauregard, G. (1991). Inactivation mechanism of tetrameric β-galactosidase by yγ-rays involves both fragmentation and temperature-dependent denaturation of protomers. Biochemistry 30, 81518157.
Rabon, E. C., Gunther, R. D., Bassilian, S. & Kempner, E. S. (1988). Radiation inactivation analysis of oligomeric structure of the H, K-ATPase. J. biol. Chem. 263, 1618916194.
Reddington, M., Klotz, K.-N., Lohse, M. J. & Hietel, B. (1989). Radiation inactivation analysis of the A1 adenosine receptor of rat brain. FEBS Letters 252, 125128.
Ruf, H. H., Schuhn, D., Dietz, R., Nastainczyk, W. & Nielsen, M. (1992). Target size analysis of prostaglandin endoperoxide synthase. Eur J. Biochem. 204, 10691073.
Saccomani, G., Sachs, G., Cuppoletti, J. & Jung, C. Y. (1981). Target molecular weight of the gastric (H+-K)-ATPase functional and structural molecular size. J. biol. Chem. 256, 77277729.
Sakaguchi, H., Hirose, S., Kume, T. & Hagiwara, H. (1992). Minimal functional size or porcine lung and testicular angiotensin-converting enzymes deduced from radiation inactivation analysis. FEBS Letters 305, 144146.
Santos, E., Nebreda, A. R., Bryan, T. & Kempner, E. S. (1988). Oligomeric structure of p21 ras proteins as determined by radiation inactivation. J. biol. Chem. 263, 98539858.
Simon, P., Swillens, S. & Dumont, J. E. (1982). Size determination of an equilibrium enzymic system by radiation inactivation. Biochem. J. 205, 477483.
Solomonson, L. P. & McCreery, M. J. (1986). Radiation inactivation of assimilatory NADH: nitrate reductase from Chlorella. J. biol. Chem. 261, 806810.
Solomonson, L. P., McCreery, M. J., Kay, C. J. & Barber, M. J. (1987). Radiation inactivation analysis of assimilatory NADH:nitrate reductase. J. biol. Chem. 262, 89348939.
Stevens, B. R., Fernandez, A., Hirayama, B., Wright, E. M. & Kempner, E. S. (1990). Intestinal brush border membrane Na+/glucose cotransporter functions in situ as a homotetramer. Proc. natl Acad. Sci. USA 87, 14561460.
Stevens, B. R., Kempner, E. S. & Wright, E. M. (1986). Radiation inactivation probe of membrane-bound enzymes: γ-glutamyltranspeptidase, aminopeptidase N, and sucrase. Anal. Biochem. 158, 278282.
Suarez, M. D. & Ferguson-Miller, S. (1987). Yeast and horse liver alcohol dehydrogenases: potential problems in target size analysis and evidence for a monomer active unit. Biochemistry 26, 33403347.
Symons, M. C. R. & Taiwo, F. A. (1992). Radiation damage to proteins: an electron paramagnetic resonance study. J. Chem. Soc. Perkin Trans. 2, 14131415.
Takahashi, M., Malathi, P., Preiser, H. & Jung, C. Y. (1985). Radiation inactivation studies on the rabbit kidney sodium-dependent glucose transporter. J. biol. Chem. 260, 1055110556.
Wang, M. Y., Chien, L. F. & Pan, R. L. (1988). Radiation inactivation analysis of chloroplast CF0-CF1, ATPase. J. biol. Chem. 263, 88388843.
Verkman, A. S., Skorecki, K. & Ausiello, D. A. (1984). Radiation inactivation of oligomeric enzyme systems: Theoretical considerations. Proc. nail Acad. Sci. USA 81, 150154.
Verkman, A. S., Skorecki, K. L., Jung, C. Y. & Ausiello, D. A. (1986). Target molecular weights for red blood cell band 3 stilbene and mercurial binding sites. Am. J. Physiol. 251, C541C548.
von Sonntag, C. (1987). The Chemical Basis of Radiation Biology. London: Taylor & Francis.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed