Skip to main content
×
Home
    • Aa
    • Aa

Bacterial flagellar motor

  • Yoshiyuki Sowa (a1) and Richard M. Berry (a1)
Abstract
Abstract

The bacterial flagellar motor is a reversible rotary nano-machine, about 45 nm in diameter, embedded in the bacterial cell envelope. It is powered by the flux of H+ or Na+ ions across the cytoplasmic membrane driven by an electrochemical gradient, the proton-motive force or the sodium-motive force. Each motor rotates a helical filament at several hundreds of revolutions per second (hertz). In many species, the motor switches direction stochastically, with the switching rates controlled by a network of sensory and signalling proteins. The bacterial flagellar motor was confirmed as a rotary motor in the early 1970s, the first direct observation of the function of a single molecular motor. However, because of the large size and complexity of the motor, much remains to be discovered, in particular, the structural details of the torque-generating mechanism. This review outlines what has been learned about the structure and function of the motor using a combination of genetics, single-molecule and biophysical techniques, with a focus on recent results and single-molecule techniques.

Copyright
Corresponding author
*Author for correspondence: Dr. R. M. Berry, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK. Tel.: +44 1865 272 288; Fax: +44 1865 272 400; Email: r.berry1@physics.ox.ac.uk
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

S. I. Aizawa (1996). Flagellar assembly in Salmonella typhimurium. Molecular Microbiology 19, 15.

J. P. Armitage (1999). Bacterial tactic responses. Advances in Microbial Physiology 41, 229289.

J. P. Armitage & R. Schmitt (1997). Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti – variations on a theme? Microbiology 143, 36713682.

Y. Asai , I. Kawagishi , R. E. Sockett & M. Homma (2000). Coupling ion specificity of chimeras between H+- and Na+-driven motor proteins, MotB and PomB, vibrio Polar flagella. EMBO Journal 19, 36393648.

Y. Asai , T. Yakushi , I. Kawagishi & M. Homma (2003). Ion-coupling determinants of Na+-driven and H+-driven flagellar motors. Journal of Molecular Biology 327, 453463.

A. Ashkin , J. M. Dziedzic & T. Yamane (1987). Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769771.

M. D. Baker , P. M. Wolanin & J. B. Stock (2006). Signal transduction in bacterial chemotaxis. BioEssays 28, 922.

H. C. Berg (2003b). The rotary motor of bacterial flagella. Annual Review of Biochemistry 72, 1954.

H. C. Berg & R. A. Anderson (1973). Bacteria swim by rotating their flagellar filaments. Nature 245, 380382.

H. C. Berg & L. Turner (1993). Torque generated by the flagellar motor of Escherichia coli. Biophysical Journal 65, 22012216.

R. M. Berry (1993). Torque and switching in the bacterial flagellar motor. An electrostatic model. Biophysical Journal 64, 961973.

R. M. Berry (2000). Theories of rotary motors. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 355, 503509.

R. M. Berry & J. P. Armitage (1999). The bacterial flagella motor. Advances in Microbial Physiology 41, 291337.

R. M. Berry & H. C. Berg (1996). Torque generated by the bacterial flagellar motor close to stall. Biophysical Journal 71, 35013510.

R. M. Berry & H. C. Berg (1997). Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers. Proceedings of the National Academy of Sciences USA 94, 1443314437.

R. M. Berry & H. C. Berg (1999). Torque generated by the flagellar motor of Escherichia coli while driven backward. Biophysical Journal 76, 580587.

R. M. Berry , L. Turner & H. C. Berg (1995). Mechanical limits of bacterial flagellar motors probed by electrorotation. Biophysical Journal 69, 280286.

D. F. Blair (1995). How bacteria sense and swim. Annual Review of Microbiology 49, 489522.

D. F. Blair (2003). Flagellar movement driven by proton translocation. FEBS Letters 545, 8695.

D. F. Blair & H. C. Berg (1988). Restoration of torque in defective flagellar motors. Science 242, 16781681.

D. F. Blair & H. C. Berg (1990). The MotA protein of E. coli is a proton-conducting component of the flagellar motor. Cell 60, 439449.

S. M. Block & H. C. Berg (1984). Successive incorporation of force-generating units in the bacterial rotary motor. Nature 309, 470472.

S. M. Block , D. F. Blair & H. C. Berg (1989). Compliance of bacterial flagella measured with optical tweezers. Nature 338, 514518.

T. F. Braun , L. Q. Al-Mawsawi , S. Kojima & D. F. Blair (2004). Arrangement of core membrane segments in the MotA/MotB proton-channel complex of Escherichia coli. Biochemistry 43, 3545.

T. F. Braun & D. F. Blair (2001). Targeted disulfide cross-linking of the MotB protein of Escherichia coli: evidence for two H+ channels in the stator complex. Biochemistry 40, 1305113059.

P. N. Brown , C. P. Hill & D. F. Blair (2002). Crystal structure of the middle and C-terminal domains of the flagellar rotor protein FliG. EMBO Journal 21, 32253234.

P. N. Brown , M. A. Mathews , L. A. Joss , C. P. Hill & D. F. Blair (2005). Crystal structure of the flagellar rotor protein FliN from Thermotoga maritima. Journal of Bacteriology 187, 28902902.

P. N. Brown , M. Terrazas , K. Paul & D. F. Blair (2007). Mutational analysis of the flagellar protein FliG: sites of interaction with FliM and implications for organization of the switch complex. Journal of Bacteriology 189, 305312.

C. R. Calladine (1975). Construction of bacterial flagella. Nature 255, 121124.

S. R. Caplan & M. Kara-Ivanov (1993). The bacterial flagellar motor. International Review of Cytology 147, 97164.

X. Chen & H. C. Berg (2000a). Solvent-isotope and pH effects on flagellar rotation in Escherichia coli. Biophysical Journal 78, 22802284.

X. Chen & H. C. Berg (2000b). Torque–speed relationship of the flagellar rotary motor of Escherichia coli. Biophysical Journal 78, 10361041.

B. V. Chernyak , P. A. Dibrov , A. N. Glagolev , M. Yu Sherman & V. P. Skulachev (1983). A novel type of energetics in a marine alkalitolerant bacterium. ΔμNa+-driven motility and sodium cycle. FEBS Letters 164, 3842.

S. Y. Chun & J. S. Parkinson (1988). Bacterial motility: membrane topology of the Escherichia coli MotB protein. Science 239, 276278.

P. Cluzel , M. Surette & S. Leibler (2000). An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287, 16521655.

N. C. Darnton & H. C. Berg (2007). Force-extension measurements on bacterial flagella: triggering polymorphic transformations. Biophysical Journal 92, 22302236.

N. C. Darnton , L. Turner , S. Rojevsky & H. C. Berg (2007). On torque and tumbling in swimming Escherichia coli. Journal of Bacteriology 189, 17561764.

R. De Mot & J. Vanderleyden (1994). The C-terminal sequence conservation between OmpA-related outer membrane proteins and MotB suggests a common function in both gram-positive and gram-negative bacteria, possibly in the interaction of these domains with peptidoglycan. Molecular Microbiology 12, 333334.

D. Derosier (2006). Bacterial flagellum: visualizing the complete machine in situ. Current Biology 16, R928R930.

T. A. Duke , N. Le Novere & D. Bray (2001). Conformational spread in a ring of proteins: a stochastic approach to allostery. Journal of Molecular Biology 308, 541553.

T. C. Elston & G. Oster (1997). Protein turbines. I: the bacterial flagellar motor. Biophysical Journal 73, 703721.

J. J. Falke , R. B. Bass , S. L. Butler , S. A. Chervitz & M. A. Danielson (1997). The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annual Review of Cell and Developmental Biology 13, 457512.

N. R. Francis , V. M. Irikura , S. Yamaguchi , D. J. Derosier & R. M. Macnab (1992). Localization of the Salmonella typhimurium flagellar switch protein FliG to the cytoplasmic M-ring face of the basal body. Proceedings of the National Academy of Sciences USA 89, 63046308.

N. R. Francis , G. E. Sosinsky , D. Thomas & D. J. Derosier (1994). Isolation, characterization and structure of bacterial flagellar motors containing the switch complex. Journal of Molecular Biology 235, 12611270.

D. C. Fung & H. C. Berg (1995). Powering the flagellar motor of Escherichia coli with an external voltage source. Nature 375, 809812.

T. Furuta , F. A. Samatey , H. Matsunami , K. Imada , K. Namba & A. Kitao (2007). Gap compression/extension mechanism of bacterial flagellar hook as the molecular universal joint. Journal of Structural Biology 157, 481490.

C. V. Gabel & H. C. Berg (2003). The speed of the flagellar rotary motor of Escherichia coli varies linearly with protonmotive force. Proceedings of the National Academy of Sciences USA 100, 87488751.

A. G. Garza , L. W. Harris-Haller , R. A. Stoebner & M. D. Manson (1995). Motility protein interactions in the bacterial flagellar motor. Proceedings of the National Academy of Sciences USA 92, 19701974.

K. K. Gosink & C. C. Hase (2000). Requirements for conversion of the Na+-driven flagellar motor of Vibrio cholerae to the H+-driven motor of Escherichia coli. Journal of Bacteriology 182, 42344240.

K. Hasegawa , I. Yamashita & K. Namba (1998). Quasi- and nonequivalence in the structure of bacterial flagellar filament. Biophysical Journal 74, 569575.

G. L. Hazelbauer , J. J. Falke & J. S. Parkinson (2008). Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends in Biochemical Science 33, 919.

N. Hirota , M. Kitada & Y. Imae (1981). Flagellar motors of alkalophilic Bacillus Are powered by an electrochemical potential gradient of Na+. FEBS Letters 132, 278280.

E. R. Hosking , C. Vogt , E. P. Bakker & M. D. Manson (2006). The Escherichia coli MotAB proton channel unplugged. Journal of Molecular Biology 364, 921937.

H. Hotani (1976). Light microscope study of mixed helices in reconstituted Salmonella flagella. Journal of Molecular Biology 106, 151166.

Y. Inoue , C. J. Lo , H. Fukuoka , H. Takahashi , Y. Sowa , T. Pilizota , G. H. Wadhams , M. Homma , R. M. Berry & A. Ishijima (2008). Torque–speed relationships of Na+-driven chimeric flagellar motors in Escherichia coli. Journal of Molecular Biology 376, 12511259.

E. Katayama , T. Shiraishi , K. Oosawa , N. Baba & S. Aizawa (1996). Geometry of the flagellar motor in the cytoplasmic membrane of Salmonella typhimurium as determined by stereo-photogrammetry of quick-freeze deep-etch replica images. Journal of Molecular Biology 255, 458475.

S. Khan & H. C. Berg (1983). Isotope and thermal effects in chemiosmotic coupling to the flagellar motor of streptococcus. Cell 32, 913919.

S. Khan , M. Dapice & T. S. Reese (1988). Effects of Mot gene expression on the structure of the flagellar motor. Journal of Molecular Biology 202, 575584.

S. Khan , M. Meister & H. C. Berg (1985). Constraints on flagellar rotation. Journal of Molecular Biology 184, 645656.

A. Kitao , K. Yonekura , S. Maki-Yonekura , F. A. Samatey , K. Imada , K. Namba & N. Go (2006). Switch interactions control energy frustration and multiple flagellar filament structures. Proceedings of the National Academy of Sciences USA 103, 48944899.

S. Kojima & D. F. Blair (2001). Conformational change in the stator of the bacterial flagellar motor. Biochemistry 40, 1304113050.

S. Kojima & D. F. Blair (2004a). The bacterial flagellar motor: structure and function of a complex molecular machine. International Review of Cytology 233, 93134.

S. Kojima & D. F. Blair (2004b). Solubilization and purification of the MotA/MotB complex of Escherichia coli. Biochemistry 43, 2634.

S. Kudo , Y. Magariyama & S. Aizawa (1990). Abrupt changes in flagellar rotation observed by laser dark-field microscopy. Nature 346, 677680.

S. H. Larsen , J. Adler , J. J. Gargus & R. W. Hogg (1974). Chemomechanical coupling without ATP: the source of energy for motility and chemotaxis in bacteria. Proceedings of the National Academy of Sciences USA 71, 12391243.

P. Läuger (1977). Ion transport and rotation of bacterial flagella. Nature 268, 360362.

P. Läuger (1988). Torque and rotation rate of the bacterial flagellar motor. Biophysical Journal 53, 5365.

M. C. Leake , J. H. Chandler , G. H. Wadhams , F. Bai , R. M. Berry & J. P. Armitage (2006). Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443, 355358.

S. Y. Lee , H. S. Cho , J. G. Pelton , D. Yan , E. A. Berry & D. E. Wemmer (2001). Crystal structure of activated CheY. Comparison with other activated receiver domains. Journal of Biological Chemistry 276, 1642516431.

G. Li & J. X. Tang (2006). Low flagellar motor torque and high swimming efficiency of Caulobacter crescentus swarmer cells. Biophysical Journal 91, 27262734.

M. Linden & M. Wallin (2007). Dwell time symmetry in random walks and molecular motors. Biophysical Journal 92, 38043816.

S. A. Lloyd & D. F. Blair (1997). Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. Journal of Molecular Biology 266, 733744.

S. A. Lloyd , F. G. Whitby , D. F. Blair & C. P. Hill (1999). Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor. Nature 400, 472475.

C. J. Lo , M. C. Leake & R. M. Berry (2006). Fluorescence measurement of intracellular sodium concentration in single Escherichia coli cells. Biophysical Journal 90, 357365.

C. J. Lo , M. C. Leake , T. Pilizota & R. M. Berry (2007). Nonequivalence of membrane voltage and ion-gradient as driving forces for the bacterial flagellar motor at low load. Biophysical Journal 93, 294302.

B. J. Lowder , M. D. Duyvesteyn & D. F. Blair (2005). FliG subunit arrangement in the flagellar rotor probed by targeted cross-linking. Journal of Bacteriology 187, 56405647.

G. Lowe , M. Meister & H. C. Berg (1987). Rapid rotation of flagellar bundles in swimming bacteria. Nature 325, 637640.

R. M. Macnab (2003). How bacteria assemble flagella. Annual Review of Microbiology 57, 77100.

Y. Magariyama , S. Sugiyama , K. Muramoto , Y. Maekawa , I. Kawagishi , Y. Imae & S. Kudo (1994). Very fast flagellar rotation. Nature 371, 752.

M. D. Manson , P. Tedesco , H. C. Berg , F. M. Harold & C. Van Der Drift (1977). A protonmotive force drives bacterial flagella. Proceedings of the National Academy of Sciences USA 74, 30603064.

M. D. Manson , P. M. Tedesco & H. C. Berg (1980). Energetics of flagellar rotation in bacteria. Journal of Molecular Biology 138, 541561.

S. Matsuura , J. Shioi & Y. Imae (1977). Motility in Bacillus subtilis driven by an artificial protonmotive force. FEBS Letters 82, 187190.

A. D. Mehta , R. S. Rock , M. Rief , J. A. Spudich , M. S. Mooseker & R. E. Cheney (1999). Myosin-V is a processive actin-based motor. Nature 400, 590593.

M. Meister & H. C. Berg (1987). The stall torque of the Bacterial flagellar motor. Biophysical Journal 52, 413419.

M. Meister , S. R. Caplan & H. C. Berg (1989). Dynamics of a tightly coupled mechanism for flagellar rotation. Bacterial motility, chemiosmotic coupling, protonmotive force. Biophysical Journal 55, 905914.

M. Meister , G. Lowe & H. C. Berg (1987). The proton flux through the bacterial flagellar motor. Cell 49, 643650.

Y. Mimori , I. Yamashita , K. Murata , Y. Fujiyoshi , K. Yonekura , C. Toyoshima & K. Namba (1995). The structure of the R-type straight flagellar filament of Salmonella at 9 Å resolution by electron cryomicroscopy. Journal of Molecular Biology 249, 6987.

T. Minamino & K. Namba (2004). Self-assembly and type III protein export of the bacterial flagellum. Journal of Molecular Microbiology and Biotechnology 7, 517.

K. Muramoto , I. Kawagishi , S. Kudo , Y. Magariyama , Y. Imae & M. Homma (1995). High-speed rotation and speed stability of the sodium-driven flagellar motor in Vibrio alginolyticus. Journal of Molecular Biology 251, 5058.

G. E. Murphy , J. R. Leadbetter & G. J. Jensen (2006). In situ structure of the complete Treponema primitia flagellar motor. Nature 442, 10621064.

G. E. Murphy , E. G. Matson , J. R. Leadbetter , H. C. Berg & G. J. Jensen (2008). Novel ultrastructures of Treponema primitia and their implications for motility. Molecular Microbiology 67, 11841195.

K. Namba & F. Vonderviszt (1997). Molecular architecture of bacterial flagellum. Quarterly Reviews of Biophysics 30, 165.

F. Oosawa & S. Hayashi (1986). The loose coupling mechanism in molecular machines of living cells. Advances in Biophysics 22, 151183.

S. Y. Park , B. Lowder , A. M. Bilwes , D. F. Blair & B. R. Crane (2006). Structure of FliM provides insight into assembly of the switch complex in the bacterial flagella motor. Proceedings of the National Academy of Sciences USA 103, 1188611891.

J. S. Parkinson , P. Ames & C. A. Studdert (2005). Collaborative signaling by bacterial chemoreceptors. Current Opinion in Microbiology 8, 116121.

K. Paul & D. F. Blair (2006). Organization of FliN subunits in the flagellar motor of Escherichia coli. Journal of Bacteriology 188, 25022511.

K. Paul , J. G. Harmon & D. F. Blair (2006). Mutational analysis of the flagellar rotor protein FliN: identification of surfaces important for flagellar assembly and switching. Journal of Bacteriology 188, 52405248.

S. W. Reid , M. C. Leake , J. H. Chandler , C. J. Lo , J. P. Armitage & R. M. Berry (2006). The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. Proceedings of the National Academy of Sciences USA 103, 80668071.

B. Sakmann & E. Neher (1995). Single-Channel Recording, 2nd edn.New York: Plenum Press.

F. A. Samatey , K. Imada , S. Nagashima , F. Vonderviszt , T. Kumasaka , M. Yamamoto & K. Namba (2001). Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410, 331337.

F. A. Samatey , H. Matsunami , K. Imada , S. Nagashima , T. R. Shaikh , D. R. Thomas , J. Z. Chen , D. J. Derosier , A. Kitao & K. Namba (2004). Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism. Nature 431, 10621068.

A. D. Samuel & H. C. Berg (1995). Fluctuation analysis of rotational speeds of the bacterial flagellar motor. Proceedings of the National Academy of Sciences USA 92, 35023506.

A. D. Samuel & H. C. Berg (1996). Torque-generating units of the bacterial flagellar motor step independently. Biophysical Journal 71, 918923.

K. Sato & M. Homma (2000). Functional reconstitution of the Na+-driven polar flagellar motor component of Vibrio alginolyticus. Journal of Biological Chemistry 275, 57185722.

T. R. Shaikh , D. R. Thomas , J. Z. Chen , F. A. Samatey , H. Matsunami , K. Imada , K. Namba & D. J. Derosier (2005). A partial atomic structure for the flagellar hook of Salmonella typhimurium. Proceedings of the National Academy of Sciences USA 102, 10231028.

L. L. Sharp , J. Zhou & D. F. Blair (1995a). Features of MotA proton channel structure revealed by tryptophan-scanning mutagenesis. Proceedings of the National Academy of Sciences USA 92, 79467950.

L. L. Sharp , J. Zhou & D. F. Blair (1995b). Tryptophan-scanning mutagenesis of MotB, an integral membrane protein essential for flagellar rotation in Escherichia coli. Biochemistry 34, 91669171.

M. Silverman & M. Simon (1974). Flagellar rotation and the mechanism of bacterial motility. Nature 249, 7374.

V. Sourjik (2004). Receptor clustering and signal processing in E. coli chemotaxis. Trends in Microbiology 12, 569576.

V. Sourjik & H. C. Berg (2002). Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer. Proceedings of the National Academy of Sciences USA 99, 1266912674.

Y. Sowa , H. Hotta , M. Homma & A. Ishijima (2003). Torque–speed relationship of the Na+-driven flagellar motor of Vibrio alginolyticus. Journal of Molecular Biology 327, 10431051.

Y. Sowa , A. D. Rowe , M. C. Leake , T. Yakushi , M. Homma , A. Ishijima & R. M. Berry (2005). Direct observation of steps in rotation of the bacterial flagellar motor. Nature 437, 916919.

H. Suzuki , K. Yonekura & K. Namba (2004). Structure of the rotor of the bacterial flagellar motor revealed by electron cryomicroscopy and single-particle image analysis. Journal of Molecular Biology 337, 105113.

K. Svoboda , C. F. Schmidt , B. J. Schnapp & S. M. Block (1993). Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721727.

H. Terashima , H. Fukuoka , T. Yakushi , S. Kojima & M. Homma (2006). The Vibrio motor proteins, MotX and MotY, are associated with the basal body of Na+-driven flagella and required for stator formation. Molecular Microbiology 62, 11701180.

D. R. Thomas , N. R. Francis , C. Xu & D. J. Derosier (2006). The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar typhimurium. Journal of Bacteriology 188, 70397048.

D. R. Thomas , D. G. Morgan & D. J. Derosier (1999). Rotational symmetry of the C ring and a mechanism for the flagellar rotary motor. Proceedings of the National Academy of Sciences USA 96, 1013410139.

A. S. Toker & R. M. Macnab (1997). Distinct regions of bacterial flagellar switch protein FliM interact with FliG, FliN and CheY. Journal of Molecular Biology 273, 623634.

L. Turner , W. S. Ryu & H. C. Berg (2000). Real-time imaging of fluorescent flagellar filaments. Journal of Bacteriology 182, 27932801.

T. Ueno , K. Oosawa & S. Aizawa (1992). M ring, S ring and proximal rod of the flagellar basal body of Salmonella typhimurium are composed of subunits of a single protein, FliF. Journal of Molecular Biology 227, 672677.

T. Ueno , K. Oosawa & S. Aizawa (1994). Domain structures of the Ms ring component protein (FliF) of the flagellar basal body of Salmonella typhimurium. Journal of Molecular Biology 236, 546555.

G. H. Wadhams & J. P. Armitage (2004). Making sense of it all: bacterial chemotaxis. Nature Reviews. Molecular Cell Biology 5, 10241037.

D. Walz & S. R. Caplan (2000). An electrostatic mechanism closely reproducing observed behavior in the bacterial flagellar motor. Biophysical Journal 78, 626651.

M. Washizu , Y. Kurahashi , H. Iochi , O. Kurosawa , S. Aizawa , S. Kudo , Y. Magariyama & H. Hotani (1993). Dielectrophoretic measurement of bacterial motor characteristics. IEEE Transactions on Industry Applications 29, 286294.

M. Welch , K. Oosawa , S. Aizawa & M. Eisenbach (1993). Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. Proceedings of the National Academy of Sciences USA 90, 87878791.

J. Xing , F. Bai , R. Berry & G. Oster (2006). Torque–speed relationship of the bacterial flagellar motor. Proceedings of the National Academy of Sciences USA 103, 12601265.

T. Yakushi , J. Yang , H. Fukuoka , M. Homma & D. F. Blair (2006). Roles of charged residues of rotor and stator in flagellar rotation: comparative study using H+-driven and Na+-driven motors in Escherichia coli. Journal of Bacteriology 188, 14661472.

R. Yasuda , H. Noji , K. Kinosita Jr. & M. Yoshida (1998). F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degree steps. Cell 93, 11171124.

R. Yasuda , H. Noji , M. Yoshida , K. Kinosita Jr. & H. Itoh (2001). Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410, 898904.

K. Yonekura , S. Maki , D. G. Morgan , D. J. Derosier , F. Vonderviszt , K. Imada & K. Namba (2000). The bacterial flagellar cap as the rotary promoter of flagellin self-assembly. Science 290, 21482152.

K. Yonekura , S. Maki-Yonekura & K. Namba (2003). Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424, 643650.

T. Yorimitsu & M. Homma (2001). Na+-driven flagellar motor of vibrio. Biochimica et Biophysica Acta 1505, 8293.

T. Yorimitsu , A. Mimaki , T. Yakushi & M. Homma (2003). The conserved charged residues of the C-terminal region of FliG, a rotor component of the Na+-driven flagellar motor. Journal of Molecular Biology 334, 567583.

T. Yorimitsu , Y. Sowa , A. Ishijima , T. Yakushi & M. Homma (2002). The systematic substitutions around the conserved charged residues of the cytoplasmic loop of Na+-driven flagellar motor component PomA. Journal of Molecular Biology 320, 403413.

H. S. Young , H. Dang , Y. Lai , D. J. Derosier & S. Khan (2003). Variable symmetry in Salmonella typhimurium flagellar motors. Biophysical Journal 84, 571577.

J. Yuan & H. C. Berg (2008). Resurrection of the flagellar rotary motor near zero load. Proceedings of the National Academy of Sciences USA 105, 11821185.

J. Zhou & D. F. Blair (1997). Residues of the cytoplasmic domain of MotA essential for torque generation in the bacterial flagellar motor. Journal of Molecular Biology 273, 428439.

J. Zhou , S. A. Lloyd & D. F. Blair (1998). Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proceedings of the National Academy of Sciences USA 95, 64366441.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Quarterly Reviews of Biophysics
  • ISSN: 0033-5835
  • EISSN: 1469-8994
  • URL: /core/journals/quarterly-reviews-of-biophysics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×