Skip to main content
×
×
Home

Frustration in biomolecules

  • Diego U. Ferreiro (a1), Elizabeth A. Komives (a2) and Peter G. Wolynes (a3)
Abstract

Biomolecules are the prime information processing elements of living matter. Most of these inanimate systems are polymers that compute their own structures and dynamics using as input seemingly random character strings of their sequence, following which they coalesce and perform integrated cellular functions. In large computational systems with finite interaction-codes, the appearance of conflicting goals is inevitable. Simple conflicting forces can lead to quite complex structures and behaviors, leading to the concept of frustration in condensed matter. We present here some basic ideas about frustration in biomolecules and how the frustration concept leads to a better appreciation of many aspects of the architecture of biomolecules, and especially how biomolecular structure connects to function by means of localized frustration. These ideas are simultaneously both seductively simple and perilously subtle to grasp completely. The energy landscape theory of protein folding provides a framework for quantifying frustration in large systems and has been implemented at many levels of description. We first review the notion of frustration from the areas of abstract logic and its uses in simple condensed matter systems. We discuss then how the frustration concept applies specifically to heteropolymers, testing folding landscape theory in computer simulations of protein models and in experimentally accessible systems. Studying the aspects of frustration averaged over many proteins provides ways to infer energy functions useful for reliable structure prediction. We discuss how frustration affects folding mechanisms. We review here how the biological functions of proteins are related to subtle local physical frustration effects and how frustration influences the appearance of metastable states, the nature of binding processes, catalysis and allosteric transitions. In this review, we also emphasize that frustration, far from being always a bad thing, is an essential feature of biomolecules that allows dynamics to be harnessed for function. In this way, we hope to illustrate how Frustration is a fundamental concept in molecular biology.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Frustration in biomolecules
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Frustration in biomolecules
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Frustration in biomolecules
      Available formats
      ×
Copyright
Corresponding author
*Authors for correspondence: Elizabeth A. Komives, Department of Chemistry and Biochemistry, U.C. San Diego, La Jolla, CA 92093-0378, USA; Tel.: (858) 534-3058, Fax: (858) 534-7390; Peter G. Wolynes, Department of Physics, Department of Chemistry, and Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA; Tel.: (713) 348-4101, Fax: (713) 348-4109.
References
Hide All
Adams, M. J., Blundell, T. L., Dodson, E. J., Dodson, G. G., Vijayan, M., Baker, E. N., Harding, M. M., Hodgkin, D. C., Rimmer, B. & Sheat, S. D. (1969). Structure of rhombohedral 2 zinc insulin crystals. Nature 224, 491495.
Aksel, T. & Barrick, D. (2009). Analysis of repeat-protein folding using nearest-neighbor statistical mechanical models. Methods in Enzymology 455, 95125. doi: 10.1016/S0076-6879(08)04204-3.
Anderson, P. W. (1950). Antiferromagnetism. Theory of superexchange interaction. Physical Review 79, 350356. doi: 10.1103/PhysRev.79.350. URL: http://link.aps.org/doi/10.1103/PhysRev.79.350.
André, I., Strauss, C. E. M., Kaplan, D. B., Bradley, P. & Baker, D. (2008). Emergence of symmetry in homooligomeric biological assemblies. Proceedings of the National Academy of Sciences of the United States of America 105, 1614816152. doi: 10.1073/pnas.0807576105.
Anfinsen, C. B. (1973). Principles that govern the folding of protein chains. Science 181, 223230.
Anonymous (2013). Frustration. Wikipedia, the free encyclopedia. URL: http://en.wikipedia.org/wiki/Frustration (visited on 2013).
Baker, E. N., Blundell, T. L., Cutfield, J. F., Cutfield, S. M., Dodson, E. J., Dodson, G. G., Hodgkin, D. M., Hubbard, R. E., Isaacs, N. W. & Reynolds, C. D. (1988). The structure of 2Zn pig insulin crystals at 1.5 A resolution. Philosophical Transaction of the Royal Society B, Biological Sciences 319, 369456.
Barrick, D., Ferreiro, D. U. & Komives, E. A. (2008). Folding landscapes of ankyrin repeat proteins: experiments meet theory. Currunet Opinion in Structural Biology 18, 2734. doi: 10.1016/j.sbi.2007.12.004.
Beasley, J. R. & Hecht, M. (1997). Protein design: the choice of de novo sequences. Journal of Biological Chemistry 272, 20312034.
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research 28, 235242.
Best, R. B. (2012). ‘Atomistic molecular simulations of protein folding. Currunet Opinion in Structural Biology 22(1), 5261. doi: 10.1016/j.sbi.2011.12.001.
Best, R. B., Hummer, G. & Eaton, W. A. (2013). Native contacts determine protein folding mechanisms in atomistic simulations. Proceedings of the National Academy of Sciences of the United States of America 110(44), 1787417879.
Binz, H. K., Stumpp, M. T., Forrer, P., Amstutz, P. & Plückthun, A. (2003). Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. Journal of Molecular Biology 332, 489503.
Borgia, A., Wensley, B. G., Soranno, A., Nettels, D., Borgia, M. B., Hoffmann, A., Pfeil, S. H., Lipman, E. A., Clarke, J. & Schuler, B. (2012). Localizing internal friction along the reaction coordinate of protein folding by combining ensemble and single-molecule fluorescence spectroscopy. Nature Communications 3, 1195. doi: 10.1038/ncomms2204.
Bradley, L. H., Thumfort, P. P. & Hecht, M. H (2006). De novo proteins from binarypatterned combinatorial libraries. Methods in Molecular Biology 340, 5369. doi: 10.1385/1-59745-116-9:53.
Bray, D. (1995). Protein molecules as computational elements in living cells. Nature 376, 307312. doi: 10.1038/376307a0.
Brems, D. N., Alter, L. A., Beckage, M. J., Chance, R. E., DiMarchi, R. D., Green, L. K., Long, H. B., Pekar, A. H., Shields, J. E. & Frank, B. H. (1992). Altering the association properties of insulin by amino acid replacement. Protein Engineering 5, 527533.
Brenner, S. E., Chothia, C. & Hubbard, T. J. (1997). Population statistics of protein structures: lessons from structural classifications. Currunet Opinion in Structural Biology 7, 369376.
Brown, B. M. & Sauer, R. T. (1999). Tolerance of Arc repressor to multiple-alanine substitutions. Proceedings of the National Academy of Sciences of the United States of America 96, 19831988.
Bruylants, G. & Redfield, C. (2009). 15N NMR relaxation data reveal significant chemical exchange broadening in the α-domain of human α-lactalbumin. Biochemistry 48, 40314039.
Bryngelson, J. D., Onuchic, J. N., Socci, N. D. & Wolynes, P. G. (1995). Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21, 167195.
Bryngelson, J. D. & Wolynes, P. G. (1987). Spin glasses and the statistical mechanics of protein folding. Proceedings of the National Academy of Sciences of the United States of America 84, 75247528.
Bullough, P. A., Hughson, F. M., Skehel, J. J. & Wiley, D. C. (1994). Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371, 3743. doi: 10.1038/371037a0.
Capaldi, A. P., Kleanthous, C. & Radford, S. E. (2002). Im7 folding mechanism: misfolding on a path to the native state. Nature Structural Biology 9, 209216. doi: 10.1038/nsb757.
Capraro, D. T., Roy, M., Onuchic, J. N., Gosavi, S. & Jennings, P. A. (2012). beta-Bulge triggers route-switching on the functional landscape of interleukin-1beta. Proceedings of the National Academy of Sciences of the United States of America 109, 14901493. doi: 10.1073/pnas.1114430109.
Chang, J-Y. (2011). Diverse pathways of oxidative folding of disulfide proteins: underlying causes and folding models. Biochemistry 50, 34143431. doi: 10.1021/bi200131j.
Changeux, J-P (2013). 50 years of allosteric interactions: the twists and turns of the models. Nature Reviews Molecular Cell Biology. doi: 10.1038/nrm3695.
Chaudhari, P. & Turnbull, D. (1978). Structure and properties of metallic glasses. Science 199, 1121.
Chavez, L. L., Onuchic, J. N. & Clementi, C. (2004). Quantifying the roughness on the free energy landscape: entropic bottlenecks and protein folding rates. Journal of the American Chemical Society 126, 84268432. doi: 10.1021/ja049510+.
Cho, S. S., Levy, Y. & Wolynes, P. G. (2006). P versus Q: structural reaction coordinates capture protein folding on smooth landscapes. Proceedings of the National Academy of Sciences of the United States of America 103, 586591. doi: 10.1073/pnas.0509768103.
Cho, S. S., Levy, Y. & Wolynes, P. G. (2009). Quantitative criteria for native energetic heterogeneity influences in the prediction of protein folding kinetics. Proceedings of the National Academy of Sciences of the United States of America 106, 434439. doi: 10.1073/pnas.
Cierpicki, T. & Otlewski, J. (2002). NMR structures of two variants of bovine pancreatic trypsin inhibitor (BPTI) reveal unexpected influence of mutations on protein structure and stability. Journal of Molecular Biology 321, 647658.
Clarke, N. D. (1995). Sequence ‘minimization’: exploring the sequence landscape with simplified sequences. Current Opinion in Biotechnology 6, 467472.
Clementi, C. (2008). Coarse-grained models of protein folding: toy models or predictive tools? Currunet Opinion in Structural Biology 18, 1015. doi: 10.1016/j.sbi.2007.10.005.
Clementi, C., Nymeyer, H. & Onuchic, J. N. (2000). Topological and energetic factors: what determines the structural details of the transition state ensemble and ‘en-route’ intermediates for protein folding? An investigation for small globular proteins. Journal of Molecular Biology 298, 937953. doi: 10.1006/jmbi.2000.3693.
Clementi, C. & Plotkin, S. S. (2004). The effects of nonnative interactions on protein folding rates: theory and simulation. Protein Science 13, 17501766. doi: 10.1110/ps.03580104.
Collins, M. F. & Petrenko, O. A. (1997). Review/synthèse: triangular antiferromagnets. Canadian Journal of Physics 75, 605655.
Cooper, S., Khatib, F., Treuille, A., Barbero, J., Lee, J., Beenen, M., Leaver-Fay, A., Baker, D., Popovíc, Z. & Players, F. (2010). Predicting protein structures with a multiplayer online game. Nature 466, 756760. doi: 10.1038/nature09304.
Creighton, T. E. & Goldenberg, D. P. (1984). Kinetic role of a meta-stable native-like two-disulphide species in the folding transition of bovine pancreatic trypsin inhibitor. Journal of Molecular Biology 179, 497526.
Crick, F. (1971). General model for the chromosomes of higher organisms. Nature 234, 2527.
Davtyan, A., Schafer, N. P., Zheng, W., Clementi, C., Wolynes, P. G. & Papoian, G. A. (2012). AWSEM-MD: protein structure prediction using coarse-grained physical potentials and bioinformatically based local structure biasing. Journal of Physical Chemistry B 116, 84948503. doi: 10.1021/jp212541y.
Derrida, B. (1981). Random-energy model: an exactly solvable model of disordered systems. Physical Review B 2, 2613.
Dixit, A. & Verkhivker, G. M. (2011). ‘The energy landscape analysis of cancer mutations in protein kinases. PLoS ONE 6, e26071. doi: 10.1371/journal.pone.0026071.
Eastwood, M. P., Hardin, C., Luthey-Schulten, Z. & Wolynes, P. G. (2001). Evaluating protein structure–prediction schemes using energy landscape theory. IBM Journal of Research and Development 45, 475497.
Ejtehadi, M. R., Avall, S. P. & Plotkin, S. S. (2004). Three-body interactions improve the prediction of rate and mechanism in protein folding models. Proceedings of the National Academy of Sciences of the United States of America 101, 1508815093. doi: 10.1073/pnas.0403486101.
Englander, S. W. (2000). Protein folding intermediates and pathways studied by hydrogen exchange. Annual Review of Biophysics and Biomolecular Structure 29, 213238.
Fernández, A. & Shakhnovich, E. I. (1990). Activation-energy landscape for metastable RNA folding. Physical Review A 42, 36573659.
Ferreiro, D. U., Hegler, J. A., Komives, E. A. & Wolynes, P. G. (2007). Localizing frustration in native proteins and protein assemblies. Proceedings of the National Academy of Sciences of the United States of America 104, 1981919824. doi: 10.1073/pnas.0709915104.
Ferreiro, D. U., Hegler, J. A., Komives, E. A. & Wolynes, P. G. (2011). On the role of frustration in the energy landscapes of allosteric proteins. Proceedings of the National Academy of Sciences of the United States of America 108, 34993503. doi: 10.1073/pnas.1018980108.
Ferreiro, D. U. & Komives, E. A. (2007). The plastic landscape of repeat proteins. Proceedings of the National Academy of Sciences of the United States of America 104, 77357736. doi: 10.1073/pnas.0709915104.
Ferreiro, D. U. & Komives, E. A. (2010). Molecular mechanisms of system control of NF-kappaB signaling by IkappaBalpha. Biochemistry 49, 15601567. doi: 10.1021/bi901948j.
Ferreiro, D. U., Sánchez, I. E. & de Prat Gay, G. (2008a). Transition state for protein–DNA recognition. Proceedings of the National Academy of Sciences of the United States of America 105, 1079710802. doi: 10.1073/pnas.0802383105.
Ferreiro, D. U., Walczak, A. M., Komives, E. A. & Wolynes, P. G. (2008b). The energy landscapes of repeat-containing proteins: topology, cooperativity, and the folding funnels of one-dimensional architectures. PLoS Computational Biology 4, e1000070. doi: 10.1371/journal.pcbi.1000070.
Ferreiro, D. U. & Wolynes, P. G. (2008). The capillarity picture and the kinetics of one-dimensional protein folding. Proceedings of the National Academy of Sciences of the United States of America 105, 98539854. doi: 10.1073/pnas.0805287105.
Fersht, A. R., Matouschek, A. & Serrano, L. (1992). The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. Journal of Molecular Biology 224, 771782.
Field, D. J. (1999). Wavelets, vision and the statistics of natural scenes. Philosophical transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 357, 25272542. doi: 10.1098/rsta.1999.0446.
Figueiredo, A. M., Whittaker, S. B.-M., Knowling, S. E., Radford, S. E. & Moore, G. R. (2013). Conformational dynamics is more important than helical propensity for the folding of the all alpha-helical protein IM7. Protein Science doi: 10.1002/pro.2372.
Foit, L., Morgan, G. J., Kern, M. J., Steimer, L. R., von Hacht, A. A., Titchmarsh, J., Warriner, S. L., Radford, S. E. & Bardwell, J. C. A. (2009). Optimizing protein stability in vivo. Molecular Cell 36, 861871. doi: 10.1016/j.molcel.2009.11.022.
Frauenfelder, H. (1987). Function and dynamics of myoglobin. Annals of the New York Academy of Sciences 504, 151167. ISSN: 1749-6632. doi: 10.1111/J.1749-6632.1987.tb48730.x.
Frauenfelder, H., Chen, G., Berendzen, J., Fenimore, P. W., Jansson, H., McMahon, B. H., Stroe, I. R., Swenson, J. & Young, R. D. (2009). A unified model of protein dynamics. Proceedings of the National Academy of Sciences of the United States of America 106, 51295134. doi: 10.1073/pnas.0900336106.
Frauenfelder, H., McMahon, B. H. & Fenimore, P. W. (2003). Myoglobin: the hydrogen atom of biology and a paradigm of complexity. Proceedings of the National Academy of Sciences of the United States of America 100, 86158617. doi: 10.1073/pnas.1633688100.
Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. (1991). The energy landscapes and motions of proteins. Science 254, 15981603.
Frauenfelder, H. & Wolynes, P. G. (1985). Rate theories and puzzles of hemeprotein kinetics. Science 299, 337345.
Friedrichs, M. S. & Wolynes, P. G. (1989). Toward protein tertiary structure recognition by means of associative memory Hamiltonians. Science 246, 371373.
Friel, C. T., Smith, D. A., Vendruscolo, M., Gsponer, J. & Radford, S. E. (2009). The mechanism of folding of Im7 reveals competition between functional and kinetic evolutionary constraints. Nature Structural & Molecular Biology 16, 318324. doi: 10.1038/nsmb.1562.
Fuglestad, B., Gasper, P. M., McCammon, J. A., Markwick, P. R. L. & Komives, E. A. (2013). Correlated motions and residual frustration in thrombin. Journal of Physical Chemistry B 117, 1285712863. doi: 10.1021/jp402107u.
Galzitskaya, O. V. & Finkelstein, A. V. (1999). A theoretical search for folding/unfolding nuclei in three-dimensional protein structures. Proceedings of the National Academy of Sciences of the United States of America 96, 1129911304.
Gambin, Y., Schug, A., Lemke, E. A., Lavinder, J. J., Ferreon, A. C. M., Magliery, T. J., Onuchic, J. N. & Deniz, A. A. (2009). Direct single-molecule observation of a protein living in two opposed native structures. Proceedings of the National Academy of Sciences of the United States of America 106, 1015310158. doi: 10.1073/pnas. 0904461106.
Gassner, N. C., Baase, W. A., Lindstrom, J. D., Lu, J., Dahlquist, F. W., & Matthews, B. W. (1999). Methionine and alanine substitutions show that the formation of wild-type-like structure in the carboxy-terminal domain of T4 lysozyme is a rate-limiting step in folding. Biochemistry 38, 1445114460.
Gerland, U., Moroz, J. D. & Hwa, T. (2002). Physical constraints and functional characteristics of transcription factor-DNA interaction. Proceedings of the National Academy of Sciences of the United States of America 99, 1201512020. doi: 10.1073/pnas.192693599.
Gilbert, W. (1987). The exon theory of genes. In Cold Spring Harbor Symposia on Quantitative Biology, vol. 52. New York, NY: Cold Spring Harbor Laboratory Press, pp. 901905.
Go, N. (1983). Theoretical studies of protein folding. Annual Review of Biophysics and Bioengineering 12, 183210. doi: 10.1146/annurev.bb.12.060183.001151.
Goldstein, R. A., Luthey-Schulten, Z. A. & Wolynes, P. G. (1992a). Protein tertiary structure recognition using optimized Hamiltonians with local interactions. Proceedings of the National Academy of Sciences of the United States of America 89, 90299033.
Goldstein, R. A., Luthey-Schulten, Z. A. & Wolynes, P. G. (1992b). Optimal protein-folding codes from spin-glass theory. Proceedings of the National Academy of Sciences of the United States of America 89, 49184922.
Gosavi, S., Chavez, L. L., Jennings, P. A. & Onuchic, J. N. (2006). Topological frustration and the folding of interleukin-1 beta. Journal of Molecular Biology 357, 986996. doi: 10.1016/j.jmb.2005.11.074.
Gosavi, S., Whitford, P. C., Jennings, P. A. & Onuchic, J. N. (2008). Extracting function from a beta-trefoil folding motif. Proceedings of the National Academy of Sciences of the United States of America 105, 1038410389. doi: 10.1073/pnas.0801343105.
Greet, R. J. & Turnbull, D. (1967). Glass transition in o-terphenyl. Journal of Chemical Physics 46, 1243.
Gulukota, K. & Wolynes, P. G. (1994). Statistical mechanics of kinetic proofreading in protein folding in vivo. Proceedings of the National Academy of Sciences of the United States of America 91, 92929296.
Hagai, T., Azia, A., Trizac, E. & Levy, Y. (2012). Modulation of folding kinetics of repeat proteins: interplay between intra- and interdomain interactions. Biophysical Journal 103, 15551565. doi: 10.1016/j.bpj.2012.08.018.
Han, J.-H., Batey, S., Nickson, A. A., Teichmann, S. A. & Clarke, J. (2007). The folding and evolution of multidomain proteins. Nature Reviews Molecular Cell Biology 8, 319330. doi: 10.1038/nrm2144.
Hegler, J. A., Weinkam, P. & Wolynes, P. G. (2008). The spectrum of biomolecular states and motions. HFSP Journal 2, 307313.
Henry, E. R., Best, R. B. & Eaton, W. A. (2013). Comparing a simple theoretical model for protein folding with all-atom molecular dynamics simulations. Proceedings of the National Academy of Sciences of the United States of America 110, 1788017885. doi: 10.1073/pnas.1317105110.
Henzler-Wildman, K. A., Thai, V., Lei, M., Ott, M., Wolf-Watz, M., Fenn, T., Pozharski, E., Wilson, M. A., Petsko, G. A., Karplus, M., Hübner, C. G. & Kern, D. (2007). Intrinsic motions along an enzymatic reaction trajectory. Nature 450, 838844. doi: 10.1038/nature06410.
Heytesbury, W. (1494). Regule solvendi sophismata. Bonetus Locatellus.
Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America 79, 25542558.
Hua, Q.-X., Nakagawa, S. H., Jia, W., Huang, K., Phillips, N. B., Hu, S.-Q. & Weiss, M. A. (2008). Design of an active ultrastable single-chain insulin analog: synthesis, structure, and therapeutic implications. Journal of Biological Chemistry 283, 1470314716. doi: 10.1074/jbc.M800313200.
Huntington, J. A., Read, R. J. & Carrell, R. W. (2000). Structure of a serpin–protease complex shows inhibition by deformation. Nature 407, 923926. doi: 10.1038/35038119.
Im, H., Ahn, H. Y. & Yu, M. H. (2000). Bypassing the kinetic trap of serpin protein folding by loop extension. Protein Science 9, 14971502. doi: 10.1110/ps.9.8.1497.
Itzhaki, L. S. & Lowe, A. R. (2012). From artificial antibodies to nanosprings: the biophysical properties of repeat proteins. Advances in Experimental Medicine and Biology 747, 153166. doi: 10.1007/978-1-4614-3229-6_10.
Jane Dyson, H. & Wright, P. E. (2002). Insights into the structure and dynamics of unfolded proteins from nuclear magnetic resonance. Advances in Protein Chemistry 62, 311340.
Javadi, Y. & Main, E. R. G. (2009). Exploring the folding energy landscape of a series of designed consensus tetratricopeptide repeat proteins. Proceedings of the National Academy of Sciences of the United States of America 106, 1738317388. doi: 10.1073/pnas.0907455106.
Jenik, M., Parra, R. G., Radusky, L. G., Truchanski, A., Wolynes, P. G. & Ferreiro, D. U. (2012). Protein frustratometer: a tool to localize energetic frustration in protein molecules. Nucleic Acids Research 40(Web Server issue), W348W351. doi: 10.1093/nar/gks447.
Jin, W., Kambara, O., Sasakawa, H., Tamura, A. & Takada, S. (2003). De novo design of foldable proteins with smooth folding funnel: automated negative design and experimental verification. Structure 11, 581590.
Kajava, A. V. (2012). Tandem repeats in proteins: from sequence to structure. Journal of Structural Biology 179, 279288. doi: 10.1016/j.jsb.2011.08.009.
Kamtekar, S., Schiffer, J. M., Xiong, H., Babik, J. M. & Hecht, M. H. (1993). Protein design by binary patterning of polar and nonpolar amino acids. Science 262, 16801685.
Karplus, M. & McCammon, J. A. (1983). Dynamics of proteins: elements and function. Annual Review in Biochemistry 52, 263300. doi: 10.1146/annurev.bi.52.070183.001403.
Kato, A., Yamada, M., Nakamura, S., Kidokoro, S.-I. & Kuroda, Y. (2007). Thermodynamic properties of BPTI variants with highly simplified amino acid sequences. Journal of Molecular Biology 372, 737746. doi: 10.1016/j.jmb.2007.06.066.
Kauffman, S. (2013). Beyond reductionism twice: no laws entail biosphere evolution, formal cause laws beyond efficient cause laws. arXiv:1303.5684.
Kauzmann, W. (1959). Forces responsible for maintaining the native configurations of proteins. Advances in Protein Chemistry 14, 3335.
Keefe, A. D. & Szostak, J. W. (2001). Functional proteins from a random-sequence library. Nature 410, 715718. doi: 10.1038/35070613.
Klimov, D. K. & Thirumalai, D. (2002). Stiffness of the distal loop restricts the structural heterogeneity of the transition state ensemble in SH3 domains. Journal of Molecular Biology 317, 721737. doi: 10.1006/jmbi.2002.5453.
Koretke, K. K., Luthey-Schulten, Z. & Wolynes, P. G. (1996). Self-consistently optimized statistical mechanical energy functions for sequence structure alignment. Protein Science 5, 10431059.
Kramer, M. A., Wetzel, S. K., Plückthun, A., Mittl, P. R. E. & Grütter, M. G. (2010). Structural determinants for improved stability of designed ankyrin repeat proteins with a redesigned C-capping module. Journal of Molecular Biology 404, 381391. doi: 10.1016/j.jmb.2010.09.023.
Kretzmann, N. (1982). Syncategoremata, exponibilia, sophismata. In The Cambridge History of Later Medieval Philosophy (eds. Kretzmann, N., Kenny, A. & Pinborg, J.), pp. 211245. Cambridge: Cambridge University Press.
Kuhlman, B., Dantas, G., Ireton, G. C., Varani, G., Stoddard, B. L. & Baker, D. (2003). Design of a novel globular protein fold with atomic-level accuracy. Science 302, 13641368. doi: 10.1126/Science.1089427.
Kuriyan, J. & Eisenberg, D. (2007). The origin of protein interactions and allostery in colocalization. Nature 450, 983990. doi: 10.1038/nature06524.
Kuroda, Y. & Kim, P. S. (2000). Folding of bovine pancreatic trypsin inhibitor (BPTI) variants in which almost half the residues are alanine. Journal of Molecular Biology 298, 493501. doi: 10.1006/jmbi.2000.3622.
Lau, A. W. C., Hoffman, B. D., Davies, A., Crocker, J. C. & Lubensky, T. C. (2003). Microrheology, stress fluctuations, and active behavior of living cells. Physics Review Letters 91, 198101.
Leffler, J. E. (1953). Parameters for the description of transition states. Science 117, 340341. doi: 10.1126/science.117.3039.340.
Levinthal, C. (1968). Are there pathways for protein folding. Journal de Chimie Physique 65, 4445.
Levy, Y., Cho, S. S., Shen, T., Onuchic, J. N. & Wolynes, P. G. (2005). Symmetry and frustration in protein energy landscapes: a near degeneracy resolves the Rop dimer-folding mystery. Proceedings of the National Academy of Sciences of the United States of America 102, 23732378.
Levy, Y., Onuchic, J. N. & Wolynes, P. G. (2007). Fly-casting in protein–DNA binding: frustration between protein folding and electrostatics facilitates target recognition. Journal of the American Chemical Society 129, 738739. doi: 10.1021/ja065531n.
Levy, Y., Wolynes, P. G. & Onuchic, J. N. (2004). Protein topology determines binding mechanism. Proceedings of the National Academy of Sciences of the United States of America 101, 511516. doi: 10.1073/pnas.2534828100.
Little, W. A. (1974). The existence of persistent states in the brain. Mathematical Biosciences 19, 101120.
Liu, R., Baase, W. A. & Matthews, B. W. (2000). The introduction of strain and its effects on the structure and stability of T4 lysozyme. Journal of Molecular Biology 295, 127145. doi: 10.1006/jmbi.1999.3300.
Lum, K., Chandler, D. & Weeks, J. D (1999). Hydrophobicity at small and large length scales. Journal of Physical Chemistry B 103, 45704577.
Luo, M. (2012). Influenza virus entry. Advances in Experimental Medicine and Biology 726, 201221. doi: 10.1007/978-1-4614-0980-9_9.
Luthey-Schulten, Z., Ramirez, B. E. & Wolynes, P. G. (1995). Helix-coil, liquid crystal, and spin glass transitions of a collapsed heteropolymer. Journal of Physical Chemistry 99, 21772185.
Ma, H., Wan, C., Wu, A. & Zewail, A. H. (2007). DNA folding and melting observed in real time redefine the energy landscape. Proceedings of the National Academy of Sciences of the United States of America 104, 712716. doi: 10.1073/pnas.0610028104.
Marcovitz, A. & Levy, Y. (2011). Frustration in protein–DNA binding influences conformational switching and target search kinetics. Proceedings of the National Academy of Sciences of the United States of America 108, 1795717962.
Marcovitz, A. & Levy, Y. (2013). Weak frustration regulates sliding and binding kinetics on rugged protein–DNA landscapes. Journal of Physical Chemistry B 112, 1300513014. doi: 10.1021/jp402296d.
Marek, M. S., Johnson-Buck, A. & Walter, N. G. (2011). The shape-shifting quasispecies of RNA: one sequence, many functional folds. Physical Chemistry Chemical Physics 13, 1152411537. doi: 10.1030/c1cp20576e.
Matouschek, A., Kellis, J. T. Jr., Serrano, L. & Fersht, A. R. (1989). Mapping the transition state and pathway of protein folding by protein engineering. Nature 340, 122126. doi: 10.1038/340122a0.
Matthews, C. R. & Hurle, M. R. (1987). Mutant sequences as probes of protein folding mechanisms. Bioessays 6, 254257. doi: 10.1002/bies.950060603.
May, A. C. (1999). Towards more meaningful hierarchical classification of amino acid scoring matrices. Protein Engineering 12, 707712.
Meiering, E. M., Serrano, L. & Fersht, A. R. (1992). Effect of active site residues in barnase on activity and stability. Journal of Molecular Biology 225, 585589.
Mélin, R., Li, H., Wingreen, N. S. & Tang, C. (1999). Designability, thermodynamic stability, and dynamics in protein folding: a lattice model study. Journal of Chemical Physics 110, 1252.
Mello, C. C. & Barrick, D. (2004). An experimentally determined protein folding energy landscape. Proceedings of the National Academy of Sciences of the United States of America 101, 1410214107. doi: 10.1073/pnas.0403386101.
Mézard, M. & Mora, T. (2009). Constraint satisfaction problems and neural networks: a statistical physics perspective. Journal of Physiology – Paris 103, 107113.
Miyashita, O., Onuchic, J. N. & Wolynes, P. G. (2003). Nonlinear elasticity, proteinquakes, and the energy landscapes of functional transitions in proteins. Proceedings of the National Academy of Sciences of the United States of America 100, 1257012575. doi: 10.1073/pnas.2135471100.
Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B. & Troyansky, L. (1999). Determining computational complexity from characteristic ‘phase transitions’. Nature 400, 133137.
Monod, J. (1973). Le hasard et la nécessité: essai sur la philosophie naturelle de la biologie moderne. Éditions du Seuil.
Muñoz, V. & Eaton, W. A. (1999). A simple model for calculating the kinetics of protein folding from three-dimensional structures. Proceedings of the National Academy of Sciences of the United States of America 96, 1131111316.
Munson, M., Anderson, K. S. & Regan, L. (1997). Speeding up protein folding: mutations that increase the rate at which Rop folds and unfolds by over four orders of magnitude. Folding and Designing 2, 7787.
Murphy, L. R., Wallqvist, A. & Levy, R. M. (2000). Simplified amino acid alphabets for protein fold recognition and implications for folding. Protein Engineering 13, 149152.
Naganathan, A. N. & Muñoz, V. (2010). Insights into protein folding mechanisms from large scale analysis of mutational effects. Proceedings of the National Academy of Sciences of the United States of America 107, 86118616. doi: 10.1073/pnas.1000988107.
Néel, L. (1970). Magnetism and the local molecular field. In Nobel Lectures, vol. Physics 1963–1970 (ed. Ekspong, G.), pp. 318341. Amsterdam: Elsevier.
Noel, J. K., Whitford, P. C. & Onuchic, J. N. (2012). The shadow map: a general contact definition for capturing the dynamics of biomolecular folding and function. Journal of Physical Chemistry B 116, 86928702. doi: 10.1021/jp300852d.
Noel, J. K., Whitford, P. C., Sanbonmatsu, K. Y. & Onuchic, J. N. (2010). SMOG@ctbp: simplified deployment of structure-based models in GROMACS. Nucleic Acids Research 38(Web Server issue), W657W661. doi: 10.1093/nar/gkq498.
Norambuena, T. & Melo, F. (2010). The protein-DNA Interface database. BMC Bioinformatics 11, 262. doi: 10.1186/1471-2105-11-262.
Nordblad, P. (2013). Competing interaction in magnets: the root of ordered disorder or only frustration? Physica Scripta 88, 058301.
Oliveberg, M. & Wolynes, P. G. (2005). The experimental survey of protein-folding energy landscapes. Quarterly Reviews of Biophysics 38, 245288.
Olsson, M. H. M., Parson, W. W. & Warshel, A. (2006). Dynamical contributions to enzyme catalysis: critical tests of a popular hypothesis. Chemical Reviews 106, 17371756. doi: 10.1021/cr040427e.
Onuchic, J. N., Luthey-Schulten, Z. & Wolynes, P. G. (1997). Theory of protein folding: the energy landscape perspective. Annual Review of Physical Chemistry 48, 545600. doi: 10.1146/annrev.physchem.48.1.545.
Onuchic, J. N. & Wolynes, P. G. (2004). Theory of protein folding. Currunet Opinion in Structural Biology 14, 7075. doi: 10.1016/j.sbi.2004.01.009.
Onuchic, J. N., Wolynes, P. G., Luthey-Schulten, Z. & Socci, N. D. (1995). Toward an outline of the topography of a realistic protein-folding funnel. Proceedings of the National Academy of Sciences of the United States of America 92, 36263630.
Panchenko, A. R., Luthey-Schulten, Z. & Wolynes, P. G. (1996). Foldons, protein structural modules, and exons. Proceedings of the National Academy of Sciences of the United States of America 93, 20082013.
Papoian, G. A., Ulander, J., Eastwood, M. P., Luthey-Schulten, Z. & Wolynes, P. G. (2004). Water in protein structure prediction. Proceedings of the National Academy of Sciences of the United States of America 101, 33523357. doi: 10.1073/pnas.0307851100.
Papoian, G. A., Ulander, J. & Wolynes, P. G. (2003a). Role of water mediated interactions in protein-protein recognition landscapes. Journal of the American Chemical Society 125, 91709178. doi: 10.1021/ja034729u.
Papoian, G. A. & Wolynes, P. G. (2003b). The physics and bioinformatics of binding and folding-an energy landscape perspective. Biopolymers 68, 333349. doi: 10.1002/bip.10286.
Parra, R. G., Espada, R., Sánchez, I. E., Sippl, M. J. & Ferreiro, D. U. (2013). Detecting repetitions and periodicities in proteins by tiling the structural space. Journal of Physical Chemistry B 117, 1288712897. doi: 10.1021/jp402105j.
Pervushin, K., Vamvaca, K., Vögeli, B. & Hilvert, D. (2007). Structure and dynamics of a molten globular enzyme. Nature Structural and Molecular Biology 14, 12021206.
Piana, S., Lindorff-Larsen, K. & Shaw, D. E. (2011). How robust are protein folding simulations with respect to force field parameterization? Biophysical Journal 100, L47L49. doi: 10.1016/j.bpj.2011.03.051.
Piana, S., Lindorff-Larsen, K. & Shaw, D. E. (2012). Protein folding kinetics and thermodynamics from atomistic simulation. Proceedings of the National Academy of Sciences of the United States of America 109, 1784517850. doi: 10.1073/pnas.1201811109.
Plaxco, K. W., Simons, K. T. & Baker, D. (1998). Contact order, transition state placement and the refolding rates of single domain proteins. Journal of Molecular Biology 277, 985994. doi: 10.1006/jmbi.1998.1645.
Plotkin, S. S. & Onuchic, J. N. (2002). Understanding protein folding with energy landscape theory. Part I: basic concepts. Quarterly Reviews of Biophysics 35, 111167.
Plotkin, S. S., Wang, J. & Wolynes, P. G. (1996). Correlated energy landscape model for finite, random heteropolymers. Physical Review E 53, 6271.
Plotkin, S. S., Wang, J. & Wolynes, P. G. (1997). Statistical mechanics of a correlated energy landscape model for protein folding funnels. Journal of Chemical Physics 106, 29322948. doi: http://dx.doi.org/10.1063/1.473355.
Porter, C. T., Bartlett, G. J. & Thornton, J. M. (2004). The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Research 32(Database issue), D129D133. doi: 10.1093/nar/gkh028.
Portman, J. J., Takada, S. & Wolynes, P. G. (1998). Variational theory for site resolved protein folding free energy surfaces. Physical Review Letters 81, 5237.
Portman, J. J., Takada, S. & Wolynes, P. G. (2001a). Microscopic theory of protein folding rates. I. Fine structure of the free energy profile and folding routes from a variational approach. Journal of Chemical Physics 114, 52375240.
Portman, J. J., Takada, S. & Wolynes, P. G. (2001b). Microscopic theory of protein folding rates. II. Local reaction coordinates and chain dynamics. Journal of Chemical Physics 114, 5082.
Reches, M., Snyder, P. W. & Whitesides, G. M. (2009). Folding of electrostatically charged beads-on-a-string as an experimental realization of a theoretical model in polymer science. Proceedings of the National Academy of Sciences of the United States of America 106, 1764417649. doi: 10.1073/pnas.0905533106.
Riddle, D. S., Santiago, J. V., Bray-Hall, S. T., Doshi, N., Grantcharova, V. P., Yi, Q. & Baker, D. (1997). Functional rapidly folding proteins from simplified amino acid sequences. Nature Structural Biology 4, 805809.
Rothemund, P. W. K. (2006). Folding DNA to create nanoscale shapes and patterns. Nature 440, 297302. doi: 10.1038/nature04586.
Sali, A., Shakhnovich, E. & Karplus, M. (1994). Kinetics of protein folding. A lattice model study of the requirements for folding to the native state. Journal of Molecular Biology 235, 16141636.
Sánchez, I. E. & Kiefhaber, T. (2003a). Evidence for sequential barriers and obligatory intermediates in apparent two-state protein folding. Journal of Molecular Biology 325, 367376.
Sánchez, I. E. & Kiefhaber, T. (2003b). Non-linear rate-equilibrium free energy relationships and Hammond behavior in protein folding. Biophysical Chemistry 100, 397407.
Sánchez, I. E., Ferreiro, D. U., Dellarole, M. & de Prat-Gay, G. (2010). Experimental snapshots of a protein–DNA binding landscape. Proceedings of the National Academy of Sciences of the United States of America 107, 77517756. doi: 10.1073/pnas.0911734107.
Sánchez, I. E., Ferreiro, D. U. & de Prat Gay, G. (2011). Mutational analysis of kinetic partitioning in protein folding and protein-DNA binding. Protein Engineering Design and Selection 24, 179184. doi: 10.1093/protein/gzq064.
Scalley-Kim, M. & Baker, D. (2004). Characterization of the folding energy landscapes of computer generated proteins suggests high folding free energy barriers and cooperativity may be consequences of natural selection. Journal of Molecular Biology 338, 573583. doi: 10.1016/j.jmb.2004.02.055.
Schafer, N. P., Hoffman, R. M. B., Burger, A., Craig, P. O., Komives, E. A. & Wolynes, P. G. (2012). Discrete kinetic models from funneled energy landscape simulations. PLoS ONE 7, e50635. doi: 10.1371/journal.pone.0050635.
Schiffer, M. & Edmundson, A. B. (1967). Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophysical Journal 7, 121135.
Schiffer, P. & Ramirez, A. P. (1996). Recent experimental progress in the study of geometrical magnetic frustration. Comments on Condensed Matter Physics 18, 2150.
Schildkraut, C. & Lifson, S. (1965). Dependence of the melting temperature of DNA on salt concentration. Biopolymers 3, 195208. doi: 10.1002/bip.360030207.
Serganov, A. & Nudler, E. (2013). A decade of riboswitches. Cell 152, 1724. doi: 10.1016/j.cell.2012.12.024.
Shakhnovich, E. & Gutin, A. (1990). Enumeration of all compact conformations of copolymers with random sequence of links. Journal of Chemical Physics 93, 5967.
Shen, T., Hofmann, C. P., Oliveberg, M. & Wolynes, P. G. (2005). Scanning malleable transition state ensembles: comparing theory and experiment for folding protein U1A. Biochemistry 44, 64336439.
Shoemaker, B. A., Portman, J. J. & Wolynes, P. G. (2000). Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proceedings of the National Academy of Sciences of the United States of America 97, 88688873. doi: 10.1073/pnas.160259697.
Shoemaker, B. A., Wang, J. & Wolynes, P. G. (1999). Exploring structures in protein folding funnels with free energy functionals: the transition state ensemble. Journal of Molecular Biology 287, 675694. doi: 10.1006/jmbi.1999.2613.
Shoichet, B. K., Baase, W. A., Kuroki, R. & Matthews, B. W. (1995). A relationship between protein stability and protein function. Proceedings of the National Academy of Sciences of the United States of America 92, 452456.
Simondon, G. (2005). L'individuation: à la lumière des notions de forme et d'information. Editions Jérôme Millon.
Sippl, M. J. & Wiederstein, M. (2012). Detection of spatial correlations in protein structures and molecular complexes. Structure 20, 718728. doi: 10.1016/j.str.2012.01.024.
Slutsky, M. & Mirny, L. A. (2004). Kinetics of protein–DNA interaction: facilitated target location in sequence-dependent potential. Biophysical Journal 87, 40214035. doi: 10.1529/biophysj.104.050765.
Smith, B. A. & Hecht, M. H. (2011). Novel proteins: from fold to function. Current Opinion in Chemical Biology 15, 421426.
Solomatin, S. V., Greenfeld, M., Chu, S. & Herschlag, D. (2010). Multiple native states reveal persistent ruggedness of an RNA folding landscape. Nature 463, 681684. doi: 10.1038/nature08717.
Spolar, R. S. & Record, M. T. Jr (1994). Coupling of local folding to site-specific binding of proteins to DNA. Science 263, 777784.
Stevenson, J. D. & Wolynes, P. G. (2010). The ultimate fate of supercooled liquids. Journal of Physical Chemistry A 115, 37133719.
Street, T. O. & Barrick, D. (2009). Predicting repeat protein folding kinetics from an experimentally determined folding energy landscape. Protein Science 18, 5868. doi: 10.1002/pro.9.
Sułkowska, J. I., Noel, J. K. & Onuchic, J. N. (2012). Energy landscape of knotted protein folding. Proceedings of the National Academy of Sciences of the United States of America 109, 1778317788.
Sutto, L., Lätzer, J., Hegler, J. A., Ferreiro, D. U. & Wolynes, P. G. (2007). Consequences of localized frustration for the folding mechanism of the IM7 protein. Proceedings of the National Academy of Sciences of the United States of America 104, 1982519830. doi: 10.1073/pnas.0709922104.
Tamaskovic, R., Simon, M., Stefan, N., Schwill, M. & Plückthun, A. (2012). Designed ankyrin repeat proteins (DARPins) from research to therapy. Methods in Enzymology 503, 101134. doi: 10.1016/B978-0-12-396962-0.00005-7.
Todd, M. J., Lorimer, G. H. & Thirumalai, D. (1996). Chaperonin-facilitated protein folding: optimization of rate and yield by an iterative annealing mechanism. Proceedings of the National Academy of Sciences of the United States of America 93, 40304035.
Tokuriki, N., Jackson, C. J., Afriat-Jurnou, L., Wyganowski, K. T., Tang, R. & Tawfik, D. S. (2012). Diminishing returns and tradeoffs constrain the laboratory optimization of an enzyme. Nature Communications 3, 1257. doi: 10.1038/ncomms2246.
Tokuriki, N., Stricher, F., Serrano, L. & Tawfik, D. S. (2008). How protein stability and new functions trade off. PLoS Computational Biology 4, e1000002. doi: 10.1371/journal.pcbi.1000002.
Tokuriki, N. & Tawfik, D. S. (2009). Stability effects of mutations and protein evolvability. Currunet Opinion in Structural Biology 19, 596604. doi: 10.1016/j.sbi.2009.08.003.
Tripp, K. W. & Barrick, D. (2008). Rerouting the folding pathway of the Notch ankyrin domain by reshaping the energy landscape. Journal of the American Chemical Society 130, 56815688. doi: 10.1021/ja0763201.
Truong, H. H., Kim, B. L., Schafer, N. P. & Wolynes, P. G. (2013). Funneling and frustration in the energy landscapes of some designed and simplified proteins. Journal of Chemical Physics 139, 121908.
Tsutsui, Y., Kuri, B., Sengupta, T. & Wintrode, P. L. (2008). The structural basis of serpin polymerization studied by hydrogen/deuterium exchange and mass spectrometry. Journal of Biological Chemistry 283, 3080430811. doi: 10.1074/jbc.M804048200.
Vannimenus, J. & Toulouse, G. (1977). Theory of the frustration effect. II. Ising spins on a square lattice. Journal of Physics C: Solid State Physics 10, L537. URL: http://stacks.iop.org/0022-3719/10/i=18/a=008.
Viasnoff, V., Meller, A. & Isambert, H. (2006). DNA nanomechanical switches under folding kinetics control. Nano Letters 6, 101104. doi: 10.1021/n105216c.
von Hippel, P. H. & Berg, O. G. (1989). Facilitated target location in biological system. Journal of Biological Chemistry 264, 675678.
Wales, D. J. (1998). Symmetry, near-symmetry and energetics. Chemical Physics Letters 285, 330336.
Wang, S. & Wolynes, P. G. (2011). On the spontaneous collective motion of active matter. Proceedings of the National Academy of Sciences of the United States of America 108, 1518415189.
Wannier, G. H. (1950a). Antiferromagnetism. The Triangular Ising Net. Physical Review 79, 357364. doi: 10.1103/PhysRev.79.357. URL: http://link.aps.org/doi/10.1103/PhysRev.79.357
Watson, J. D. & Crick, F. H. C. (1953). Molecular structure of nucleic acids. Nature 171, 737738.
Weinkam, P., Romesberg, F. E. & Wolynes, P. G. (2009). Chemical frustration in the protein folding landscape: grand canonical ensemble simulations of cytochrome c. Biochemistry 48, 23942402. doi: 10.1021/bi802293m.
Weinkam, P. & Wolynes, P. G. (2010a). The folding landscapes of metalloproteins; in protein folding and metal ions: mechanisms, biology and disease. In Protein Folding and Metal Ions: Mechanisms, Biology and Disease (eds. Wittung-Stafshed, P. & Gomes, M. C.) pp. 247273. Boca Raton, FL: Taylor and Francis.
Weinkam, P., Zimmermann, J., Romesberg, F. E. & Wolynes, P. G. (2010b). The folding energy landscape and free energy excitations of cytochrome c. Accounts of Chemical Research 43, 652660. doi: 10.1021/ar9002703.
Weinkam, P., Zimmermann, J., Sagle, L. B., Matsuda, S., Dawson, P. E., Wolynes, P. G. & Romesberg, F. E. (2008). Characterization of alkaline transitions in ferricytochrome c using carbon–deuterium infrared probes. Biochemistry 47, 1347013480. doi: 10.1021/bi801223n.
Weinkam, P., Zong, C. & Wolynes, P. G. (2005). A funneled energy landscape for cytochrome c directly predicts the sequential folding route inferred from hydrogen exchange experiments. Proceedings of the National Academy of Sciences of the United States of America 102, 1240112406. doi: 10.1073/pnas.0505274102.
Weiss, M. A. (2013). Diabetes mellitus due to the toxic misfolding of proinsulin variants. FEBS Letters 587, 19421950. doi: 10.1016/j.febslet.2013.04.044.
Weiss, O., Jimenez-Montano, M. A. & Herzel, H. (2000). Information content of protein sequences. Journal of Theoretical Biology 206, 379386.
Weissman, J. S. & Kim, P. S. (1991). Reexamination of the folding of BPTI: predominance of native intermediates. Science 253, 13861393.
Weissman, J. S. & Kim, P. S. (1992). Kinetic role of nonnative species in the folding of bovine pancreatic trypsin inhibitor. Proceedings of the National Academy of Sciences of the United States of America 89, 99009904.
Wensley, B. G., Batey, S., Bone, F. A. C., Chan, Z. M., Tumelty, N. R., Steward, A., Kwa, L. G., Borgia, A. & Clarke, J. (2010). Experimental evidence for a frustrated energy landscape in a three-helix-bundle protein family. Nature 463, 685688. doi: 10.1038/nature08743.
Wensley, B. G., Kwa, L. G., Shammas, S. L., Rogers, J. M., Browning, S., Yang, Z. & Clarke, J. (2012). Separating the effects of internal friction and transition state energy to explain the slow, frustrated folding of spectrin domains. Proceedings of the National Academy of Sciences of the United States of America 109, 1779517799. doi: 10.1073/pnas.1201793109.
Werbeck, N. D. & Itzhaki, L. S. (2007). Probing a moving target with a plastic unfolding intermediate of an ankyrin-repeat protein. Proceedings of the National Academy of Sciences of the United States of America 104, 78637868. doi: 10.1073/pnas.0610315104.
Werbeck, N. D., Rowling, P. J. E., Chellamuthu, V. R. & Itzhaki, L. S. (2008). Shifting transition states in the unfolding of a large ankyrin repeat protein. Proceedings of the National Academy of Sciences of the United States of America 105, 99829987. doi: 1073/pnas.0705300105.
Whitford, P. C., Onuchic, J. N. & Wolynes, P. G. (2008). Energy landscape along an enzymatic reaction trajectory: hinges or cracks? HFSP Journal 2, 6164. doi: 10.2976/1.2894846.
Whittaker, S. B-M, Clayden, N. J. & Moore, G. R. (2011). NMR characterisation of the relationship between frustration and the excited state of IM7. Journal of Molecular Biology 414, 511529. doi: 10.1016/j.jmb.2011.09.038.
Whittingham, J. L., Edwards, D. J., Antson, A. A., Clarkson, J. M. & Dodson, G. G. (1998). Interactions of phenol and m-cresol in the insulin hexamer, and their effect on the association properties of B28 pro – Asp insulin analogues. Biochemistry 37, 1151611523. doi: 10.1021/bi980807s.
Wolynes, P. G. (1996). Symmetry and the energy landscapes of biomolecules. Proceedings of the National Academy of Sciences of the United States of America 93, 1424914255.
Wolynes, P. G. (1997a). As simple as can be? Nature Structural Biology 4, 871874.
Wolynes, P. G. (1997b). Folding funnels and energy landscapes of larger proteins within the capillarity approximation. Proceedings of the National Academy of Sciences of the United States of America 94, 61706175.
Wolynes, P. G. (2004). Latest folding game results: protein a barely frustrates computationalists. Proceedings of the National Academy of Sciences of the United States of America 101, 68376838. doi: 10.1073/pnas.0402034101.
Wolynes, P. G. (2005). Energy landscapes and solved protein-folding problems. Philosophical Transaction of the Royal Society A: Mathematical, Physical and Engineering Sciences 363, 453464.
Woodside, M. T., Anthony, P. C., Behnke-Parks, W. M., Larizadeh, K., Herschlag, D. & Block, S. M. (2006). Direct measurement of the full, sequence-dependent folding landscape of a nucleic acid. Science 314, 10011004. doi: 10.1126/science.1133601.
Wright, C. F., Teichmann, S. A., Clarke, J. & Dobson, C. M. (2005). The importance of sequence diversity in the aggregation and evolution of proteins. Nature 438, 878881. doi: 10.1038/nature04195.
Yadahalli, S. & Gosavi, S. (2014). Designing cooperativity into the designed protein Top7. Proteins 82, 364374. doi: 10.1002/prot.24393.
Yamasaki, M., Li, W., Johnson, D. J. D. & Huntington, J. A. (2008). Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization. Nature 455, 12551258. doi: 10.1038/nature07394.
Yang, S., Cho, S. S., Levy, Y., Cheung, M. S., Levine, H., Wolynes, P. G. & Onuchic, J. N. (2004). Domain swapping is a consequence of minimal frustration. Proceedings of the National Academy of Sciences of the United States of America 101, 1378613791. doi: 10.1073/pnas.0403724101.
Yi, Q., Rajagopal, P., Klevit, R. E. & Baker, D. (2003). Structural and kinetic characterization of the simplified SH3 domain FP1. Protein Science 12, 776783. doi: 10.1110/ps.0238603.
Yue, K., Fiebig, K. M., Thomas, P. D., Chan, H. S., Shakhnovich, E. I. & Dill, K. A. (1995). A test of lattice protein folding algorithms. Proceedings of the National Academy of Sciences of the United States of America 92, 325329.
Zerbetto, M., Anderson, R., Bouguet-Bonnet, S., Rech, M., Zhang, L., Meirovitch, E., Polimeno, A. & Buck, M. (2013). Analysis of 15N-1H NMR relaxation in proteins by a combined experimental and molecular dynamics simulation approach: picosecond-nanosecond dynamics of the Rho GTPase binding domain of plexin-b1 in the dimeric state indicates allosteric pathways. Journal of Physical Chemistry B 117, 174184. doi: 10.1021/jp310142f.
Zhang, H. J., Sheng, X. R., Pan, X. M. & Zhou, J. M. (1997). Activation of adenylate kinase by denaturants is due to the increasing conformational flexibility at its active sites. Biochemical and Biophysical Research Communications 238, 382386. doi: 10.1006/bbrc.1997.7301.
Zhang, X-j, Baase, W. A. & Matthews, B. W. (2002). A helix initiation signal in T4 lysozyme identified by polyalanine mutagenesis. Biophysical Chemistry 101–102, 4356.
Zhang, Z. & Chan, H. S. (2010). Competition between native topology and nonnative interactions in simple and complex folding kinetics of natural and designed proteins. Proceedings of the National Academy of Sciences of the United States of America 107, 29202925.
Zheng, W., Schafer, N. P., Davtyan, A., Papoian, G. A. & Wolynes, P. G. (2012). Predictive energy landscapes for protein-protein association. Proceedings of the National Academy of Sciences of the United States of America 109, 1924419249. doi: 10.1073/pnas.1216215109.
Zheng, W., Schafer, N. P. & Wolynes, P. G. (2013). Frustration in the energy landscapes of multidomain protein misfolding. Proceedings of the National Academy of Sciences of the United States of America 110, 16801685. doi: 10.1073/pnas.1222130110.
Zimm, B. H. & Bragg, J. K. (1959). Theory of the phase transition between helix and random coil in polypeptide chains. Journal of Chemical Physics 31, 526.
Zong, C., Wilson, C. J., Shen, T., Wolynes, P. G. & Wittung-Stafshede, P. (2006). ϕ-Value analysis of apo-azurin folding: comparison between experiment and theory. Biochemistry 45, 64586466.
Zuckerkandl, E. & Pauling, L. (1965). Molecules as documents of evolutionary history. Journal of Theoretical Biology 8, 357366.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Quarterly Reviews of Biophysics
  • ISSN: 0033-5835
  • EISSN: 1469-8994
  • URL: /core/journals/quarterly-reviews-of-biophysics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 38
Total number of PDF views: 291 *
Loading metrics...

Abstract views

Total abstract views: 884 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th July 2018. This data will be updated every 24 hours.