Skip to main content Accessibility help

Sensitivity amplification in biochemical systems

  • A. Goldbeter (a1) and D. E. Koshland (a1)


The sensitivity of biological systems to changes in environmental stimuli is connected with their regulatory properties. In order to achieve efficient control, these systems must respond to minute environmental variations by amplifying external stimuli to yield a significant response. To that end, biochemical systems have often evolved to a cascade organization in which the product of the nth reaction in a chain acts as a catalyst in subsequent transformations. The amplification properties of such cascades were first noticed in the process of blood clotting (MacFarlane, 1964, 1969) and visual excitation (Wald, 1965). Later on, a similar organization was noticed in hormonal control of metabolism (Bowness, 1964; Stadtman & Chock, 1977, 1978; Chock, Rhee & Stadtman, 1980).



Hide All
Banks, H. T., Miech, R. F. & Olson, S. L. (1980). A comparison of mathematical models for a recycling cascade in glycogenolysis. Math. Modelling 1, 1326.
Boulding, K. (1970). conomics as a Science, pp. 7273. New York: McGraw-Hill.
Bowness, J. M. (1964). Epinephrine: cascade reactions and glycogenolytic effect. Science, N.Y. 152, 13701371.
Chock, P. B. & Stadtman, E. R. (1977). Superiority of interconvertible enzyme cascades in metabolic regulation: analysis of multicyclic systems. Proc. natn. Acad. Sci. U.S.A. 74, 27662770.
Chock, P. B., Rhee, S. G. & Stadtman, E. R. (1980). Interconvertible enzyme cascades in cellular regulation. A. Rev. Biochem. 49, 813843.
Degn, H. (1960). Bistability caused by substrate inhibition of peroxidase in an open reaction system. Nature 217, 10471050.
Eschrich, K., Schellenberger, W. & Hofmann, E. (1980). In vitro demonstration of alternative stationary states in an open enzyme system containing phosphofructokinase. Archs. Biochem. Biophys. 205, 114121.
Goldbeter, A. (1980). In Mathematical Models in Molecular and Cellular Biology (ed. Segel, L. A.), pp. 248291. Cambridge University Press.
Goldbeter, A. & Caplan, S. R. (1976). Oscillatory enzymes. A. Rev. Biophys. Bioeng. 5, 449476.
Goldbeter, A. & Koshland, D. E. Jr. (1981). An amplified sensitivity arising from covalent modification in biological systems. Proc. natn. Acad. Sci. U.S.A. 78, 68406844.
Goldbeter, A. & Segel, L. A. (1977). Unified mechanism for relay and oscillation of cyclic AMP in Dictyostelium discoideum. Proc. natn. Acad. Sci. U.S.A. 74, 15431547.
Heinrich, R. & Rapoport, T. A. (1974). A linear steady-state treatment of enzymatic chains. Eur. J. Biochem. 42, 8995.
Hess, B. & Boiteux, A. (1971). Oscillatory phenomena in biochemistry. A Rev. Biochem. 40, 237258.
Higgins, J. (1965). In Control of Energy Metabolism (ed. Chance, B., Estabrook, R. K. and Williamson, J. R.), pp. 1346.New York: Academic Press.
Kacser, H. & Burns, J. A. (1968). In Quantitative Biology of Metabolism (ed. Locker, A.), pp. 1123. Berlin-Heidelberg-New York: Springer Verlag.
Kacser, H. & Burns, J. A. (1973). In Rate Control of Biological Processes. Symp. Soc. exp. Biol. no. XXVII, 65104. Cambridge University Press.
Koshland, D. E. Jr. (1981). Biochemistry of sensing and adaptation in a simple bacterial system. A. Rev. Biochem. 50, 765782.
Koshland, D. E. Jr., Goldbeter, A. & Stock, J. (1982). Amplification and adaptation in regulatory and sensory systems. Science, N. Y. (In the press.)
Koshland, D. E. Jr., Nemethy, G. & Filmer, D. (1966). Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry, N. Y. 5, 365385.
Levine, S. N. (1966). Enzyme amplifier kinetics. Science, N. Y. 152, 651653.
Macfarlane, R. G. (1964). An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature, Lond. 202, 498499.
Macfarlane, R. G. (1969). The blood clotting mechanism. The development of a theory of blood coagulation. Proc. R. Soc. B 173, 261268.
Monod, J., Wyman, J. & Changeux, J. P. (1965). On the nature of allosteric transitions: a plausible model. J. molec. Biol. 12, 88118.
Naparstek, A., Romette, J. L., Kernevez, J. P. & Thomas, D. (1974). Memory in enzyme membranes. Nature, Lond. 249, 490491.
Newsholme, E. A. & Crabtree, B. (1976). Substrate cycles in metabolic regulation and in heat generation. Biochem. Soc. Symp. 41, 61109.
Newsholme, E. A. & Start, C. (1973). Regulation in Metabolism. New York, London: Wiley-Interscience.
Nicolis, G. & Prigogine, I. (1977). Self-organization in Nonequilibrium Systems. New York: Wiley.
Roos, W., Nanjundiah, V., Malchow, D. & Gerisch, G. (1975). Amplification of cyclic-AMP signals in aggregating cells of Dictyostelium discoideum. FEBS Lett. 53, 139142.
Savageau, M. A. (1971). Concepts relating the behaviour of biochemical systems to their underlying molecular properties. Archs. Biochem. Biophys. 145, 612621.
Savageau, M. A. (1976). Biochemical Systems Analysis. Reading, Mass.: Addison Wesley.
Stadtman, E. R. & Chock, P. B. (1977). Superiority of interconvertible enzyme cascades in metabolic regulation: analysis of monocyclic systems. Proc. natn. Acad. Sci. U.S.A. 74, 27612765.
Stadtman, E. R. & Chock, P. B. (1978). In Current Topics in Cellular Regulation, vol. 13 (ed. Horeckerand, B. L.Stadtman, E. R.), pp. 5395. New York: Academic Press.
Wald, F. (1965). Visual excitation and blood clotting. Science, N.Y. 150, 10281030.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed