Hostname: page-component-7d684dbfc8-rcw2t Total loading time: 0 Render date: 2023-09-30T11:59:52.065Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Aspartic acid racemization dating of Holocene brachiopods and bivalves from the southern Brazilian shelf, South Atlantic

Published online by Cambridge University Press:  20 January 2017

Susan L. Barbour Wood*
Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
Richard A. Krause Jr.
Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
Michał Kowalewski
Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
John Wehmiller
Department of Geology, University of Delaware, Newark, DE 19716, USA
Marcello G. Simões
Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, CP. 510, 18.618-000, Botucatu, SP, Brazil
Corresponding author. Fax: +1 540 231 3386. E-mail (S.L. Barbour Wood), (J. Wehmiller), (M.G. Simões).


The extent of racemization of aspartic acid (Asp) has been used to estimate the ages of 9 shells of the epifaunal calcitic brachiopod Bouchardia rosea and 9 shells of the infaunal aragonitic bivalve Semele casali. Both taxa were collected concurrently from the same sites at depths of 10 m and 30 m off the coast of Brazil. Asp D/L values show an excellent correlation with radiocarbon age at both sites and for both taxa (r2Site 9 B. rosea  = 0.97, r2Site 1 B. rosea = 0.997, r2Site 9 S. casali = 0.9998, r2Site 1 S. casali = 0.93). The Asp ratios plotted against reservoir-corrected AMS radiocarbon ages over the time span of multiple millennia can thus be used to develop reliable and precise geochronologies not only for aragonitic mollusks (widely used for dating previously), but also for calcitic brachiopods. At each collection site, Bouchardia specimens display consistently higher D/L values than specimens of Semele. Thermal differences between sites are also notable and in agreement with theoretical expectations, as extents of racemization for both taxa are greater at the warmer, shallower site than at the cooler, deeper one. In late Holocene marine settings, concurrent time series of aragonitic and calcitic shells can be assembled using Asp racemization dating, and parallel multi-centennial to multi-millennial records can be developed simultaneously for multiple biomineral systems.

Research Article
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Andrews, J.T., Miller, G.H., Davies, D.C., and Davies, K.H. Generic identification of fragmentary Quaternary molluscs by amino acid chromatography; a tool for Quaternary and palaeontological research. Geological Journal 20, (1985). 120.CrossRefGoogle Scholar
Angulo, R.J., Giannini, P.C.F., Suguio, K., and Pessenda, L.C.R. Relative sea-level changes in the last 5500 years in southern Brazil (Laguna–Imbituba region, Santa Catarina State) based on vermetid 14C ages. Geology 159, (1999). 323339.Google Scholar
Angulo, R.J., de Souza, M.C., Reimer, P.J., and Sasaoka, S.K. Reservoir effect of the Southern and Southeastern Brazilian Coast. Radiocarbon 47, (2005). 6773.CrossRefGoogle Scholar
Baker, R.G.V., Haworth, R.J., and Flood, P.G. Warmer or cooler late Holocene marine palaeoenvironments? Interpreting 2001 Southeast Australian and Brazilian sea-level changes using fixed biological indicators and their δ18O composition. Palaeogeography, Palaeoclimatology, Palaeoecology 168, (2001). 249272.CrossRefGoogle Scholar
Behrensmeyer, A.K., Kidwell, S.M., and Gastaldo, R.A. Taphonomy and paleobiology. Paleobiology (supplement) 26, (2000). 103147.CrossRefGoogle Scholar
Burone, L., (2002). Foraminíferos bentônicos e parâmetros físico-químicos da Enseada de Ubatuba, São Paulo: estudo ecológico em uma região com poluição orgânica.. Unpublished PhD thesis, Universidade São Paulo, .Google Scholar
Campos, E.J.D., Gonçalves, J.E., and Ikeda, Y. Water mass characteristics and geostrophic circulation in the South Brazil Bight: summer of 1991. Journal of Geophysical Research 100, (1995). 1853718550.CrossRefGoogle Scholar
Carroll, M., Kowalewski, M., Simões, M.G., and Goodfriend, G.A. Quantitative estimates of time-averaging in terebratulid brachiopod shell accumulations from a modern tropical shelf. Paleobiology 29, (2003). 381402.2.0.CO;2>CrossRefGoogle Scholar
Castro Filho, B.M., Miranda, L.B., and Myao, S.Y. Condições hidrográficas na Plataforma Continental ao largo de Ubatuba: variações sazonais em média escala. Boletim do Instituto Oceanográfico, São Paulo 34, (1987). 135151.CrossRefGoogle Scholar
Eastoe, C.J., Fish, S., Fish, P., Gaspar, M.D., and Long, A. Reservoir corrections for marine samples from the South Atlantic Coast, Santa Catarina State, Brazil. Radiocarbon 44, (2002). 145148.CrossRefGoogle Scholar
Emilson, I. Alguns aspectos físiscos e químicos das águas marinhas brasileiras. Ciência e Cultura 11, (1959). 4454.Google Scholar
Flessa, K.W. Well-traveled cockles: shell transport during the Holocene transgression of the southern North Sea. Geology 26, (1998). 187190.2.3.CO;2>CrossRefGoogle Scholar
Flessa, K.W., and Kowalewski, M. Shell survival and time-averaging in nearshore and shelf environments; estimates from the radiocarbon literature. Lethaia 27, (1994). 153165.CrossRefGoogle Scholar
Gillard, R.D., Hardman, S.M., Pollard, A.M., Sutton, P.A., and Whittaker, D.K. Determinations of age at death in archaeological populations using the D/L ratio of aspartic acid in dental collagen. Pernicka, E., and Wagner, G.A. Archaeometry ′90. (1991). Birkhauser Verlag, 637644.Google Scholar
Goodfriend, G.A. Chronostratigraphic studies of sediments in the Negev Desert, using amino acid epimerization analysis of land snail shells. Quaternary Research 28, (1987). 374392.CrossRefGoogle Scholar
Goodfriend, G.A. Rapid racemization of aspartic acid in mollusc shells and potential for dating over recent centuries. Nature 357, (1992). 399401.CrossRefGoogle Scholar
Goodfriend, G.A., and Stanley, D.J. Reworking and discontinuities in Holocene sedimentation in the Nile Delta: documentation from amino acid racemization and stable isotopes in mollusk shells. Marine Geology 129, (1996). 271283.CrossRefGoogle Scholar
Goodfriend, G.A., Brigham-Grette, J., and Miller, G.H. Enhanced age resolution of the marine Quaternary record in the Arctic using aspartic acid racemization dating of bivalve shells. Quaternary Research 45, (1996). 176187.CrossRefGoogle Scholar
Goodfriend, G.A., Flessa, K.W., and Hare, P.E. Variation in amino acid epimerization rates and amino acid composition among shell layers in the bivalve Chione from the Gulf of California. Geochimica et Cosmochimica Acta 61, (1997). 14871493.CrossRefGoogle Scholar
Goodfriend, G.A., Collins, M.J., Fogel, M.L., Macko, S.A., and Wehmiller, J.F. Perspectives in Amino Acid and Protein Geochemistry. (2000). Oxford Univ. Press, Oxford.Google Scholar
Hearty, P.J., O'Leary, M.J., Kaufman, D.S., Page, M.C., and Bright, J. Amino acid geochronology of individual foraminifer (Pulleniatina obliquiloculata) tests, north Queensland margin, Australia: a new approach to correlating and dating Quaternary tropical marine sediment cores. Paleoceanography 19, (2004). A4022 CrossRefGoogle Scholar
Hughen, K.A., Baillie, M.G.L., Bard, E., Bayliss, A., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Kromer, B., McCormac, F.G., Manning, S.W., Bronk Ramsey, C., Reimer, P.J., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. Marine04 marine radiocarbon age calibration, 26–0 ka BP. Radiocarbon 46, (2004). 10591086.CrossRefGoogle Scholar
Kaufman, D.S., and Manley, W.F. A new procedure for determining DL amino acid ratios in fossils using reverse phase liquid chromatography. Quaternary Science Reviews 17, (1998). 9871000.CrossRefGoogle Scholar
Kidwell, S.M., and Flessa, K.W. The quality of the fossil record: populations, species, and communities. Annual Review of Ecology and Systematics 26, (1995). 269299.CrossRefGoogle Scholar
Kowalewski, M., Goodfriend, G.A., and Flessa, K.W. The high-resolution estimates of temporal mixing in shell beds; the evils and virtues of time-averaging. Paleobiology 24, (1998). 287304.Google Scholar
Kowalewski, M., Simões, M.G., Carroll, M., and Rodland, D.L. Abundant articulated brachiopods on a tropical, upwelling-influenced shelf (Southeast Brazilian Bight, South Atlantic). Palaios 17, (2002). 277286.2.0.CO;2>CrossRefGoogle Scholar
Lajoie, K.R., Wehmiller, J.F., and Kennedy, G.L. Inter- and intrageneric trends in apparent racemization kinetics of amino acids in Quaternary mollusks. Hare, P.E., Hoering, T.C., King, K. Jr. Biogeochemistry of Amino Acids. (1980). John Wiley and Sons, New York. 305340.Google Scholar
Lessa, G.C., Angulo, R.J., Giannini, P.C., and Araujo, A.D. Stratigraphy and Holocene evolution of a regressive barrier in South Brazil. Marine Geology 165, (2000). 87108.CrossRefGoogle Scholar
Mahiques, M.M., (1992). Variações temporais na sedimentação holocênica dos embaiamentos da região de Ubatuba (SP).. Unpublished PhD Dissertation thesis, Instituto Oceanográfico da Universidade de São Paulo, .Google Scholar
Mahiques, M.M. Dinâmica sedimentar atual nas enseadas da região de Ubatuba, Estado de São Paulo. Boletim do Instituto Oceanográfico, São Paulo 43, (1995). 111122.CrossRefGoogle Scholar
Mahiques, M.M., Tessler, M.G., and Furtado, V.V. Characterization of energy gradient in enclosed bays of Ubatuba region, South-eastern Brazil. Estuarine Coastal and Shelf Science 47, (1998). 431466.CrossRefGoogle Scholar
Mahiques, M.M., Tessler, M.G., Ciotti, A.M., Silveira, I.C.A., Sousa, S.H.M., Figueira, R.C.L., Tassinari, C.C.G., Furtado, V.V., and Passos, R.F. Hydrodynamically-driven patterns of recent sedimentation in the shelf and upper slope off Southeast Brazil. Continental Shelf Research, Inglaterra 24, (2004). 16851697.CrossRefGoogle Scholar
Manley, W.F., Miller, G.H., and Czywezynski, J. Kinetics of aspartic acid racemization in Mya and Hiatella: modeling age and paleotemperature of high-latitude Quaternary mollusks. Goodfriend, G.A., Collins, M.J., Fogel, M.L., Macko, S.A., and Wehmiller, J.F. Perspectives in Amino Acid and Protein Geochemistry. (2000). Oxford Univ. Press, 202218.Google Scholar
Mantelatto, F.L.M., and Fransozo, A. Characterization of the physical and chemical parameters of Ubatuba Bay, Northern coast of São Paulo State, Brazil. Revista Brasileira de Biologia 59, (1999). 2331.CrossRefGoogle Scholar
Martin, R.E. Taphonomy: A Process Approach. (1999). Cambridge Univ. Press, Cambridge.CrossRefGoogle Scholar
Matsuura, Y. Contribuição ao estudo da estrutura oceanográfica da região sudeste entre Cabo Frio (RJ) e Cabo de Santa Marta (SC). Ciência e Cultura 38, (1986). 14391450.Google Scholar
McCormac, F.G., Hogg, A.G., Blackwell, P.G., Buck, C.E., Higham, T.F.G., and Reimer, P.J. SHCal04 Southern hemisphere calibration 0–11.0 cal kyr BP. Radiocarbon 46, (2004). 10871092.CrossRefGoogle Scholar
Meldahl, K.H., Flessa, K.W., and Cutler, A.H. Time-averaging and post-mortem skeletal survival in benthic fossil assemblages: quantitative comparisons among Holocene environments. Paleobiology 23, (1997). 207229.CrossRefGoogle Scholar
Miller, B.B., and Hare, P.E. Amino acid geochronology: integrity of the carbonate matrix and potential of molluscan fossils. Hare, P.E., Hoering, T.C., King, K. Jr. Biogeochemistry of Amino Acids. (1980). John Wiley and Sons, New York. 415443.Google Scholar
Mitterer, R.M., and Kriausakul, N. Calculation of amino acid racemization ages based on apparent parabolic kinetics. Quaternary Science Reviews 8, (1989). 353357.CrossRefGoogle Scholar
Muniz, P., (2003). Comunidades macrobentônicas como indicadoras da qualidade ambiental de ecossistemas costeiros rasos: estudo de caso da enseada de Ubatuba (SP, Brasil).. Unpublished PhD Dissertation thesis, Instituto Oceanográfico da Universidade de São Paulo, .Google Scholar
Nadal de Masi, M.A., (1999). Prehistoric hunter-gatherer mobility on the southern Brazilian coast: Santa Catarina Island.. Unpublished PhD thesis, Stanford University, .Google Scholar
Reimer, P.J., Brown, T.A., and Reimer, R.W. Discussion: reporting and calibration of Post-Bomb 14C data. Radiocarbon 46, (2004). 12991304.CrossRefGoogle Scholar
Sanches, T.M., (1992). Distribuição dos foraminíferos recentes na região de Ubatuba, São Paulo.. Unpublished M.S. Thesis, Instituto Oceanográfico da Universidade de São Paulo, .Google Scholar
Simões, M.G., Kowalewski, M., Mello, L.H.C., Rodland, D.L., and Carroll, M. Present-day terebratulid brachiopods from the southern Brazilian shelf: paleontological and biogeographic implications. Palaeontology 47, (2004). 515532.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., and Braziunas, T.F. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40, (1998). 11271151.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., and Reimer, R.W., (2005). CALIB 5.0. [WWW program and documentation].Google Scholar
Torres, T., García-Alonso, P., Canoira, L., Llamas, J., Coello, F.J., García-González, L., Nestares, T., Peláez, A., and Rodríguez-Alto, N. Racemizatión de los aminoácidos de braquiópodos y pelecípodos de la sección de Cuesta Colorada (Almería, SE de España). Geogaceta 21, (1997). 207210.Google Scholar
Walker, K.R., and Bambach, R.K. The significance of fossil assemblages from fine-grained sediments; time-averaged communities. Abstracts with Programs-Geological Society of America 3, (1971). 783784.Google Scholar
Wehmiller, J.F. A review of amino acid racemization studies in Quaternary mollusks: stratigraphic and chronologic applications in coastal and interglacial sites, Pacific and Atlantic coasts, United States, United Kingdom, Baffin Island and tropical islands. Quaternary Science Reviews 1, (1982). 83120.CrossRefGoogle Scholar
Wehmiller, J.F. Interlaboratory comparison of amino acid enantiomeric ratios in fossil Pleistocene mollusks. Quaternary Research 22, (1984). 109121.CrossRefGoogle Scholar
Wehmiller, J.F., and Miller, G.H. Aminostratigraphic dating methods in Quaternary geology. Noller, J.S., Sowers, J.M., and Lettis, W.R. Quaternary Geochronology, Methods and Applications, American Geophysical Union Reference Shelf. (2000). 187222.Google Scholar
Wehmiller, J.F., York, L.L., and Bart, M.L. Amino-acid racemization geochronology of reworked Quaternary mollusks on U.S. Atlantic coast beaches: implications for chronostratigraphy, taphonomy, and coastal sediment transport. Marine Geology 124, (1995). 303337.CrossRefGoogle Scholar