Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-pkshj Total loading time: 0.298 Render date: 2021-12-07T22:36:21.256Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Late Quaternary lake-level changes of Lake El'gygytgyn, NE Siberia

Published online by Cambridge University Press:  20 January 2017

Olaf Juschus*
Affiliation:
Institute of Applied Geoscience, Technische Universität Berlin, Ackerstraße 76, Sek ACK 1-1, 13355 Berlin, Germany
Maksim Pavlov
Affiliation:
Arctic and Antarctic Research Institute, Bering Street, 199397 St. Petersburg, Russia
Georg Schwamborn
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Telegrafenberg, 14471 Potsdam, Germany
Frank Preusser
Affiliation:
Institute of Geological Sciences, Universität Bern, Baltzerstrasse 1+3, 3012 Bern, Switzerland
Grigory Fedorov
Affiliation:
Arctic and Antarctic Research Institute, Bering Street, 199397 St. Petersburg, Russia
Martin Melles
Affiliation:
Institute of Geology and Mineralogy, University of Cologne, Zuelpicher Strasse 49a, 50674 Cologne, Germany
*
Corresponding author. Fax: + 49 221 4705149. E-mail address: olaf.juschus@web.de (O. Juschus).

Abstract

Lake El'gygytgyn is situated in a 3.6 Ma old impact crater in northeastern Siberia. Presented here is a reconstruction of the Quaternary lake-level history as derived from sediment cores from the southern lake shelf. There, a cliff-like bench 10 m below the modern water level has been investigated. Deep-water sediments on the shelf indicate high lake levels during a warm Mid-Pleistocene period. One period with low lake level prior to Marine Oxygen Isotope Stage (MIS) 3 has been identified, followed by a period of high lake level (10 m above present). In the course of MIS 2 the lake level dropped to − 10 m. At the end of MIS 2 the bench was formed and coarse beach sedimentation occurred. Subsequently, the lake level rose rapidly to the Holocene level. Changes in water level are likely linked to climate variability. During relatively temperate periods the lake becomes free of ice in summer. Strong wave actions transport sediment parallel to the coast and towards the outlet, where the material tends to accumulate, resulting in lake level rise. During cold periods the perennial lake ice cover hampers any wave activity and pebble-transport, keeping the outlet open and causing the lake level to drop.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1 Present address: Department of Physical Geography and Quaternary Geology, Stockholm University, 10691 Stockholm, Sweden.

References

Anderson, P.M., Lozhkin, A.V., Solomatkina, T.B., and Brown, T.A. Paleoclimatic implications of glacial and postglacial refugia for Pinus pumila in western Beringia. Quaternary Research 73, (2010). 269276.CrossRefGoogle Scholar
Annan, A.P. Ground penetrating radar—workshop notes. (2001). Sensors & Software Inc., 1091 Brevik Place - Mississauga, Ontario - L4W 3R7, Canada.Google Scholar
Arcone, S.A., Lawson, D.E., Delaney, A.J., Strasser, J.C., and Strasser, J.D. Ground-penetrating radar reflection of groundwater and bedrock in an area of discontinuous permafrost. Geophysics 63, 5 (1998). 15731584.CrossRefGoogle Scholar
Asikainen, C.A., Francus, P., and Brigham-Grette, J. Sedimentology, clay mineralogy and grain-size as indicators of 65 ka of climate change from El'gygytgyn Crater Lake, Northeastern Siberia. Journal of Paleolimnology 37, (2007). 105121.CrossRefGoogle Scholar
Belyi, V.F. Structure and formation of the El'gygytgyn Basin (Anadyr Mountains). Geomorphologia 1, (2001). 3141. In Russian Google Scholar
Briant, R.M., Bateman, M.D., Coope, G.R., and Gibbard, Ph.L. Climatic control on Quaternary fluvial sedimentology of a Fenland Basin river, England. Sedimentology 52, (2005). 13971423.CrossRefGoogle Scholar
Brigham-Grette, J., Melles, M., Minyuk, P., and Party, Scientific Overview and significance of a 250 ka paleoclimate record from El'gygytgyn Crater Lake, NE Russia. Journal of Paleolimnology 37, (2007). 116.CrossRefGoogle Scholar
Cherapanova, M.V., Snyder, J.A., and Brigham-Grette, J. Diatom stratigraphy of the last 250 ka at El'gygytgyn Lake, northeast Siberia. Journal of Paleolimnology 37, (2007). 155162.CrossRefGoogle Scholar
Colman, S.M. Water-level changes in Lake Baikal, Siberia: tectonism versus climate. Geology 26, 6 (1998). 531534.2.3.CO;2>CrossRefGoogle Scholar
Colman, S.M., Karabanov, E.B., and Nelson, C.H. Quaternary sedimentation and subsidence history of Lake Baikal, Siberia, based on seismic stratigraphy and coring. Journal of Sedimentary Research 73, (2003). 941956.CrossRefGoogle Scholar
Cremer, H., Wagner, B., Juschus, O., and Melles, M. A microscopical study of diatom phytoplancton in deep crater Lake El'gygytgyn, Northeast Siberia. Algological Studies 116, (2005). 147169.CrossRefGoogle Scholar
Davis, J.L., and Annan, A.P. Ground-penetrating radar for high resolution mapping of soil and rock stratigraphy. Geophysical Prospecting 37, (1989). 531551.CrossRefGoogle Scholar
Dehnert, A., and Juschus, O. Rezente sedimentation im Elgygytgyn-See, NE Sibirien, abgeleitet aus der Zusammensetzung von Oberflächensedimenten. Leipziger Geowissenschaften 19, (2008). 3551.Google Scholar
Edwards, M.E., Anderson, P.M., Brubaker, L.B., Ager, T.A., Andreev, A.A., Bigelow, N.H., Cwynar, L.C., Eisner, W.R., Harrison, S.P., Hu, F.-S., Jolly, D., Lozhkin, A.V., MacDonald, G.M., Mock, C.J., Ritchie, J.C., Sher, A.V., Spear, R.W., Williams, J.W., and Yu, G. Pollen-based biomes for Beringia 18,000, 6000 and 0 14C yr BP. Journal of Biogeography 27, (2000). 521554.CrossRefGoogle Scholar
Forman, S.L., Pierson, J., and Gómez, J. Luminescence geochronology for sediments from Lake El'gygytgyn, northeast Siberia, Russia: constraining the timing of paleoenvironmental events for the past 200 ka. Journal of Paleolimnology 37, (2007). 7788.CrossRefGoogle Scholar
Fujita, K., Mackey, K.G., McCaleb, R.C., Gubina, L.V., Kovalev, V.N., Imaev, V.S., and Smirnov, V.N. Seismicity of Chukotka, northeastern Russia. Miller, L., Grantz, A., and Klemperer, S.L. Tectonic Evolution of the Bering Shelf–Chukchi Sea–Arctic Margin and Adjacent Landmasses. Geological Society of America Special Paper 360, (2002). 259272.Google Scholar
Gebhardt, A.C., Niessen, F., and Kopsch, C. Central uplift structure identified in one of the world's best preserved impact craters. Geology 34, 3 (2006). 145148.CrossRefGoogle Scholar
Glushkova, O., and Smirnov, V. General Geology and Geography. Melles, M., Minyuk, P., Brigham-Grette, J., and Juschus, O. The Expedition El´gygytgyn Lake 2003 (Siberian Arctic). Reports on Polar and Marine Research 509, (2005). 1418.Google Scholar
Glushkova, O., and Smirnov, V. Highest Lake Terraces. Melles, M., Minyuk, P., Brigham-Grette, J., and Juschus, O. The expedition El´gygytgyn Lake 2003 (Siberian Arctic). Reports on Polar and Marine Research 509, (2005). 8588.Google Scholar
Glushkova, O., and Smirnov, V. Coastal Morphology. Melles, M., Minyuk, P., Brigham-Grette, J., and Juschus, O. The expedition El´gygytgyn Lake 2003 (Siberian Arctic). Reports on Polar and Marine Research 509, (2005). 104108.Google Scholar
Glushkova, O., and Smirnov, V. Pliocene to Holocene geomorphic evolution and paleogeography of the El´gygytgyn Lake region. Journal of Paleolimnology 37, (2007). 3747.CrossRefGoogle Scholar
Glushkova, O., Smirnov, V., Schwamborn, G., Fedorov, G., and Kupolov, A. Terrace 10 m above Lake Level. Melles, M., Minyuk, P., Brigham-Grette, J., and Juschus, O. The expedition El´gygytgyn Lake 2003 (Siberian Arctic). Reports on Polar and Marine Research 509, (2005). 8890.Google Scholar
Gurov, E., Koeberl, Ch., and Yamnichenko, A. El´gygytgyn impact crater, Russia: structure, tectonics, and morphology. Meteoritics & Planetary Science 42, (2007). 307319.CrossRefGoogle Scholar
Harada, N., Ahagon, N., Sakamoto, T., Uchida, M., Ikehara, M., and Shibata, Y. Rapid fluctuation of alkenone temperature in the southwestern Okhotsk Sea during the past 120 ky. Global and Planetary Change 53, (2006). 2946.CrossRefGoogle Scholar
Harrison, S.P., Yu, G., and Tarasov, P.E. Late Quaternary Lake-Level Record from Northern Eurasia. Quaternary Research 45, (1996). 138159.CrossRefGoogle Scholar
Ispolatov, V.O., Tikhomirov, P.L., Heizler, M., and Cherepanova, I.Yu. New 40Ar/39Ar ages of cretaceous continental volcanics from central Chukotka: implications for initiation and duration of volcanism within the northern part of the Okhotsk Chukotka Volcanic Belt (Northeastern Eurasia). Geology 112, (2004). 369377.CrossRefGoogle Scholar
Jaccard, S.L., Haug, G.H., Sigman, D.M., Pedersen, T.F., Thierstein, H.R., and Röhl, U. Glacial/interglacial changes in subarctic North Pacific stratification. Science 308, (2005). 10031006.CrossRefGoogle ScholarPubMed
Juschus, O., Preusser, F., Melles, M., and Radtke, U. Applying SAR-IRSL methodology for dating fine-grained sediments from Lake El'gygytgyn, north-eastern Siberia. Quaternary Geochronology 2, (2007). 187194.CrossRefGoogle Scholar
Kaufman, D.S., Ager, T.A., Anderson, N.J., Anderson, P.M., Andrews, J.T., Bartlein, P.J., Brubaker, L.B., Coats, L.L., Cwynar, L.C., Duvall, M.L., Dyke, A.S., Edwards, M.E., Eisner, W.R., Gajewski, K., Geirsdóttir, A., Hu, F.S., Jennings, A.E., Kaplan, M.R., Kerwin, M.W., Lozhkin, A.V., MacDonald, G.M., Miller, G.H., Mock, C.J., Oswald, W.W., Otto-Bliesner, B.L., Porinchu, D.F., Rühland, K., Smol, J.P., Steig, E.J., and Wolfe, B.B. Holocene thermal maximum in the western Arctic (0–180°W). Quaternary Science Reviews 23, (2004). 529560.CrossRefGoogle Scholar
Kiefer, T., Sarnthein, M., Erlenkeuser, H., Grootes, P.M., and Roberts, A.P. North Pacific response to millennial-scale changes in ocean circulation over the last 60 kyr. Paleoceanography 16, (2001). 179189.CrossRefGoogle Scholar
Kokorowski, H.D., Anderson, P.M., Sletten, R.S., Lozhkin, A.V., and Brown, T.A. Late glacial and early Holocene climatic changes based on a multiproxy lacustrine sediment record from Northeast Siberia. Arctic, Antarctic, and Alpine Research 40, (2008). 497505.CrossRefGoogle Scholar
Kopsch, C. Bathymetric Measurements. Melles, M., Minyuk, P., Brigham-Grette, J., and Juschus, O. The expedition El´gygytgyn Lake 2003 (Siberian Arctic). Reports on Polar and Marine Research 509, (2005). 129131.Google Scholar
Larsen, E., Funder, S., and Thiede, J. Late Quaternary history of northern Russia and adjacent shelves—a synopsis. Boreas 28, (1999). 611.CrossRefGoogle Scholar
Layer, P.W. Argon-40/argon-39 age of the El´gygytgyn impact event, Chukotka, Russia. Meteoritics & Planetary Science 35, (2000). 591599.CrossRefGoogle Scholar
Lozhkin, A.V., Anderson, P.M., Eisner, W.R., Ravako, L.G., Hopkins, D.M., Brubaker, L.B., Colinvaux, P.A., and Miller, M.C. Late Quaternary Lacustrine Pollen Records from Southwestern Beringia. Quaternary Research 39, (1993). 314324.CrossRefGoogle Scholar
Melles, M., Brigham-Grette, J., Glushkova, O.Yu., Minyuk, P.S., Nowaczyk, N.R., and Hubberten, H.-W. Sedimentary geochemistry of a pilot core from Lake El´gygytgyn—a sensitive record of climate variability in the East Siberian Arctic during the past three climate cycles. Journal of Paleolimnology 37, (2007). 89104.CrossRefGoogle Scholar
Meyers, P.A., and Ishiwatari, R. Organic matter accumulation records in lake sediments. Lerman, A., Imboden, D., and Gat, J. Physics and chemistry of lakes. (1995). 279328.Google Scholar
Minyuk, P.S., Brigham-Grette, J., Melles, M., Borkhodoev, V.Ya., and Glushkova, O.Y. Inorganic geochemistry of El´gygytgyn Lake sediments (northeastern Russia) as an indicator of paleoclimatic change for the last 250 kyr. Journal of Paleolimnology 37, (2007). 123133.CrossRefGoogle Scholar
Moorman, B.J., Robinson, S.D., and Burgess, M.M. Imaging periglacial conditions with ground-penetrating radar. Permafrost and Periglacial Processes 14, (2003). 319329.CrossRefGoogle Scholar
Nekrasov, I.A. About the origin and history of the El'gygytgyn Lake basin. Geologiya i Geophysika 1, (1963). 4759. In Russian Google Scholar
Niessen, F., Gebhardt, A.C., Kopsch, C., and Wagner, B. Seismic investigation of the El´gygytgyn impact crater lake (Central Chukotka, NE Siberia): preliminary results. Journal of Paleolimnology 37, (2007). 4963.CrossRefGoogle Scholar
Nolan, M., and Brigham-Grette, J. Basic hydrology, limnology, and meteorology of modern Lake El´gygytgyn, Siberia. Journal of Paleolimnology 37, (2007). 1735.CrossRefGoogle Scholar
Nolan, M., Liston, G., Prokein, P., Brigham-Grette, J., Sharpton, V.L., and Huntzinger, R. Analysis of lake ice dynamics and morphology on Lake El'gygytgyn, NE Siberia, using synthetic aperture radar (SAR) and Landsat. Journal of Geophysical Research 108, D2 (2003). 8162 CrossRefGoogle Scholar
Nowaczyk, N.R., Minyuk, P., Melles, M., Brigham-Grette, J., Glushkova, O.Y., Nolan, M., Lozhkin, A.V., Stetsenko, T.V., Andersen, P.M., and Forman, S.L. Magnetostratigraphic results from impact crater Lake El´gygytgyn, northeastern Siberia: a 300 kyr long high-resolution terrestrial palaeoclimatic record from the Arctic. Geophysical Journal International 150, (2002). 109126.CrossRefGoogle Scholar
Nowaczyk, N.R., Melles, M., and Minyuk, P.S. A revised age model for core PG1351 from Lake El´gygytgyn, Chukotka, based on magnetic susceptibility variations tuned to northern hemisphere insolation variations. Journal of Paleolimnology 37, (2007). 6576.CrossRefGoogle Scholar
Nürnberg, D., and Tiedemann, R. Environmental change in the Sea of Okhotsk during the last 1.1 million years. Paleoceanography 19, (2004). doi:http://dx.doi.org/10.1029/2004PA001023 CrossRefGoogle Scholar
Obruchev, S.V. The Chaun Bay area: geological and orohydrographic description. Trudy Arckticheskogo Instituta 112, (1938). 5136. In Russian Google Scholar
Osipov, E.Y., and Khlystov, O.M. Glaciers and meltwater flux to Lake Baikal during the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 294, (2010). 415.CrossRefGoogle Scholar
Preusser, F., and Kasper, H.U. Comparison of dose rate determination using high-resolution gamma spectrometry and inductively coupled plasma-mass spectrometry. Ancient TL 19, (2001). 1923.Google Scholar
Preusser, F., Degering, D., Fuchs, M., Hilgers, A., Kadereit, A., Klasen, N., Krbetschek, M., Richter, D., and Spencer, J. Luminescence dating: basics, methods and applications. E&G Quaternary Science Journal 57, (2008). 95149.Google Scholar
Romashkin, P.A., and Williams, D.F. Sedimentation history of the Selenga Delta, Lake Baikal: simulation and interpretation. Journal of Paleolimnology 18, (1997). 181188.CrossRefGoogle Scholar
Sarnthein, M., Gebhardt, H., Kiefer, T., Kucera, M., Cook, M., and Erlenkeuser, H. Mid Holocene origin of the sea-surface salinity low in the subarctic North Pacific. Quaternary Science Reviews 23, (2004). 20892099.CrossRefGoogle Scholar
Schwamborn, G., Juschus, O., Fedorov, G., Kupolov, A., Glushkova, O., and Smirnov, V. Fluvial Supply and Export. Melles, M., Minyuk, P., Brigham-Grette, J., and Juschus, O. The expedition El´gygytgyn Lake 2003 (Siberian Arctic). Reports on Polar and Marine Research 509, (2005). 4452.Google Scholar
Schwamborn, G., Meyer, H., Fedorov, G., Schirrmeister, L., and Hubberten, H.-W. Ground ice and slope sediments archiving late Quaternary paleoenvironment and paleoclimate signals at the margins of El'gygytgyn Impact Crater, NE Siberia. Quaternary Research 66, (2006). 259272.CrossRefGoogle Scholar
Schwamborn, G., Fedorov, G., Schirrmeister, L., Meyer, H., and Hubberten, H.-W. Periglacial sediment variations controlled by late Quaternary climate and lake level change at Elgygytgyn Crater, Arctic Siberia. Boreas 37, (2008). 5565.CrossRefGoogle Scholar
Schwamborn, G., Heinzel, J., and Schirrmeister, L. Internal characteristics of ice-marginal sediments deduced from georadar profiling and sediment properties (Brogger Peninsula, Svalbard). Geomorphology 95, (2008). 7483.CrossRefGoogle Scholar
Shilo, N.A., Anderson, P.M., Brown, T.A., Lozhkin, A.V., Pakhomov, A.Y., and Solomatkina, T.B. First Data on Lake Level Changes in Northeastern Siberia during the Postglacial Time. Doklady Akademii Nauk 399A, (2004). 12491251.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., Van der Plicht, J., and Spurk, M. INTCAL98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40, 3 (1998). 10411083.CrossRefGoogle Scholar
Urabe, A., Tateishi, M., Inouchi, Y., Matsuoka, H., Inoue, T., Dmytriev, A., and Khlystov, O.M. Lake-level changes during the past 100,000 years at Lake Baikal, southern Siberia. Quaternary Research 62, (2004). 214222.CrossRefGoogle Scholar
Yu, G., and Ke, X. Lake level studies | Asia. Elias, S.A. Encyclopedia of Quaternary Science. (2007). 13431359.Google Scholar
29
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Late Quaternary lake-level changes of Lake El'gygytgyn, NE Siberia
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Late Quaternary lake-level changes of Lake El'gygytgyn, NE Siberia
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Late Quaternary lake-level changes of Lake El'gygytgyn, NE Siberia
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *