Hostname: page-component-7d684dbfc8-d9hj2 Total loading time: 0 Render date: 2023-09-29T14:36:51.881Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Late Quaternary vegetation reconstruction from the Eastern Arc Mountains, Tanzania

Published online by Cambridge University Press:  20 January 2017

C.T. Mumbi
York Institute for Tropical Ecosystem Dynamics (KITE), Environment Department, The University of York, Heslington, York, YO10 5DD, UK Tanzania Wildlife Research Institute (TAWIRI), P.O. Box 661, Arusha, Tanzania
R. Marchant*
Tanzania Wildlife Research Institute (TAWIRI), P.O. Box 661, Arusha, Tanzania
H. Hooghiemstra
Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, Kruislaan 318, 1098 SM, Amsterdam, The Netherlands
M.J. Wooller*
Alaska Stable Isotope Facility, Water and Environmental Research Center and School of Fisheries and Ocean Sciences, University of Alaska, Fairbanks, AK 99775, USA
*Corresponding author. Fax: +44 1904 432998.E-mail (R. Marchant).
*Corresponding author. Fax: +44 1904 432998.E-mail (R. Marchant).


Pollen, spore, macrofossil and stable isotope (C and N) analyses from a 266-cm sediment core collected from a swamp on the Eastern Arc Mountains, Tanzania, are used to reconstruct vegetation and environmental history. An estimated time scale based on five14C ages records approximately 38,000 yr. This palaeorecord is the first from this biodiversity hotspot and importantly extends through the last glacial maximum (LGM). The altitudinal transition from montane to upper montane forest shifted from 1700–1800 m (38,00014C yr BP) to 1800–1900 m (35,000–29,00014C yr BP). From 29,000 to 10,00014C yr BP, it shifted from 1850–1950 m across the LGM to 1750–1800 m (during 10,000–350014C yr BP), and to present-day elevations at 2000 m during the last 350014C yr BP. The relative ecosystem stability across the LGM may be explained by the Indian Ocean's influence in maintaining continuous moist forest cover during a period of East African regional climate aridity. During the late Holocene, presence of abundant coprophilous fungi and algal blooms demonstrates increasing human impact.Neurospora spores indicate frequent fires, coinciding with clear signals of decline inPodocarpus and Psychotria trees that possibly represent selective logging.

Research Article
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


African Pollen Database (APD), Retrieved from;; Scholar
Alin, S.R., Cohen, A.S., Bills, R., Gashagaza, M.M., Michel, E., Tiercelin, J.-J., Martens, K., Coveliers, P., Mboko, S.K., West, K., Soreghan, M., Kimbadi, S., Ntakimazi, G., (1999). Elects of landscape disturbance on animal communities in Lake Tanganyika, East Africa. Conservation Biology 13, 10171033.CrossRefGoogle Scholar
Alin, S.R., O'Reilly, C.M., Cohen, A.S., Dettman, D.L., Palacios-Fest, M.R., McKee, B.A., (2002). Elects of land-use change on aquatic biodiversity: A view from the paleorecord at Lake Tanganyika, East Africa. Geology 12, 11431146.2.0.CO;2>CrossRefGoogle Scholar
Alin, S.R., Cohen, A.S., (2003). Lake-level history of Lake Tanganyika, East Africa, for the past 2500 years based on ostracod-inferred water-depth reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 199, 3149.CrossRefGoogle Scholar
Anhuf, D., Schröder, B., Motzer, T., (2003). Palaeovegetation maps of Africa. Department of Physical Geography, University of Mannheim, Germany. [Online] Retrieved from Scholar
Barker, P., Gasse, F., (2003). New evidence for a reduced water balance in East Africa during the Last Glacial Maximum: implication for model-data comparison. Quaternary Science Reviews 22, 823837.CrossRefGoogle Scholar
Barker, P., Telford, R., Merdaci, O., Williamson, D., Taieb, M., Vincens, A., (2000). The sensitivity of a Tanzanian crater lake to catastrophic tephra input and four millennia of climate change. The Holocene 10, 303310.CrossRefGoogle Scholar
Barker, P., Telford, R., Gasse, F., Thevenon, R., (2002). Late Pleistocene and Holocene palaeohydrology of Lake Rukwa, Tanzania, inferred from diatom analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 187, 295306.CrossRefGoogle Scholar
Barry, S.L., Filippi, M.L., Talbot, M.R., Johnson, T.C., (2004). Sedimentology and Geochronology of Late Pleistocene and Holocene Sediments from Northern Lake Malawi. Odada, E.O., Olago, D.O., The East African Great Lakes: Limnology, Palaeolimnology and Biodiversity. Springer Netherlands, Amsterdam., 369391.Google Scholar
Bender, M.M., (1971). Variations on the 13C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10, 12391244.CrossRefGoogle Scholar
Birks, H.H., (2001). Plant macrofossils. Smol, J.P., Birks, H.J.B., Last, W.M., Tracking environmental changes in lake sediments: Biological techniques and indicators vol. 3, Kluwer, Dordrecht, The Netherlands., 4973.CrossRefGoogle Scholar
Birks, H.H., (2003). The importance of plant macrofossils in the reconstructions of Late glacial vegetation and climate: Examples from Scotland, western Norway, and Minnesota, USA. Quaternary Science Reviews 22, 453473.CrossRefGoogle Scholar
Birks, H.H., Birks, H.J.B., (2003). Reconstructing Holocene climates from pollen and plant macrofossils. Mackay, A., Battarbee, R., Birks, J., Oldfield, F., Global change in the Holocene. Arnold, London., 342357.Google Scholar
Bonnefille, R., (1971). Atlas des pollens de Éthiopie. Principales espéces des forêts de montagne. Pollen et Spores 13, 1572.Google Scholar
Bonnefille, R., Riollet, G., (1980). Pollens des savanes d'Afrique Orientale. Éditions du Center National de la Recherche Scientifique (CNRS), Paris., 140 pp.Google Scholar
Bonnefille, R., Riollet, G., (1988). The Kashiru pollen sequence (Burundi) palaeoclimatic implications for the last 40,000 yr B.P in tropical Africa. Quaternary Research 30, 1935.CrossRefGoogle Scholar
Bonnefille, R., Roeland, J.C., Guiot, J., (1990). Temperature and rainfall estimates for the past 40,000 years in equatorial Africa. Nature 346, 347349.CrossRefGoogle Scholar
Boom, A., Marchant, R., Hooghiemstra, H., Sinninghe-Damsté, J.S., (2002). CO2 and temperature-controlled altitudinal shifts of C4- and C3-dominated grasslands allow reconstruction of palaeoatmospheric pCO2 . Palaeogeography, Palaeoclimatology, Palaeoecology 177, 151168.CrossRefGoogle Scholar
Caratini, C., Guinet, P., (eds.) (1974). Pollen et spores d'Afrique tropicale. Center National de la Recherche Scientifique (CNRS), and Center d'Etudes de Geographie Tropicale, Domaine Universitaire de Bordeaux, , Talence., 282 pp.Google Scholar
Coetzee, J.A., (1967). Pollen analytical studies in East and southern Africa. Palaeoecology of Africa 3, 1146.Google Scholar
Cohen, A.S., Talbot, M.R., Awramik, S.M., Dettman, D.L., Abell, P., (1997). Lake level and paleoenvironmental history of Lake Tanganyika, Africa, as inferred from late Holocene and modern stromatolites. Geological Society of America Bulletin 109, 444460.2.3.CO;2>CrossRefGoogle Scholar
Cohen, A.S., Palacios-Fest, M.R., Dettman, D., Msaky, E., Livingstone, D., McKee, B., (1999). Lake Tanganyika biodiversity project special study on sediment discharge and its consequences: Paleolimnological investigations. Natural Resources Institute, Kent., 165 pp.Google Scholar
DANIDA (Danish International Development Agency), , (1989). Environmental profile of Tanzania. The Danish International Development Agency, Copenhagen, Denmark., 74 pp.Google Scholar
Diamond, A.W., Hamilton, A.C., (1980). The distribution of forest passerine birds and Quaternary climatic change in tropical Africa. Journal of Zoology 191, 379402.CrossRefGoogle Scholar
Dowsett-Lemaire, F., (1989). The flora and phytogeography of the evergreen forests of Malawi. Afromontane and mid-altitude forests. Bulletin du Jardin Botanique National de Belgique 59, 3131.CrossRefGoogle Scholar
El Ghazali, G.E.B., (1993). A study on the pollen flora of Sudan. Review of Palaeobotany and Palynology 76, 99345.CrossRefGoogle Scholar
Ehleringer, J.R., (1991). 13C/12C fractionation and its utility in terrestrial plant studies. Fry, B., Carbon isotope techniques. Academic Press, USA., 187200.Google Scholar
Erickson, M.G., Bonnefille, R., Lafon, S., (1999). Recent lake level variations in Lake Haubi, central Tanzania, interpreted from pollen and sediment studies. Journal of Palaeoclimatology 22, 457473.Google Scholar
Farrera, I., Harrison, S.P., Prentice, I.C., Ramstein, G., Guiot, J., Bartlein, P.J., Bonnefille, R., Bush, M., Cramer, W., von Grafenstein, U., Holmgren, K., Hooghiemstra, H., Hope, G., Jolly, D., Lauritzen, S.E., Ono, Y., Pinot, S., Stute, M., Gu, Y., (1999). Tropical climates at the last glacial maximum: A new synthesis of terrestrial palaeoclimate data. I. Vegetation, lake levels and geochemistry. Climate Dynamics 11, 823856.CrossRefGoogle Scholar
Faegri, K., Iversen, J., Feagri, K., Kaland, P.E., Krzywwinski, K., (1989). Textbook of pollen analysis. Fourth edition Wiley, Chichester, UK., 328 pp.Google Scholar
Ficken, K.J., Wooller, M.J., Swain, D.L., Street-Perrott, F.A., Eglinton, G., (2002). Reconstruction of a sub-alpine grass dominated ecosystem, Lake, Rutundu, Mount Kenya: A novel multi-proxy approach. Palaeogeography, Palaeoclimatology, Palaeoecology 177, 137150.CrossRefGoogle Scholar
Fjeldså, J., Lovett, J.C., (1997). Geographical patterns of old and young species in African forest biota: The significance of specific montane areas as evolutionary centers. Biodiversity and Conservation 6, 325347.CrossRefGoogle Scholar
Fjeldså, J., Ehrlich, D., Lambin, E., Prins, E., (1997). Are biodiversity ‘hotspots’ correlated with current eco-climatic stability? A pilot study using the NOAA-AVHRR remote sensing data. Biodiversity and Conservation 6, 401422.CrossRefGoogle Scholar
Garcin, Y., Williamson, D., Taieb, M., Vincens, A., Mathé, P.E., Majule, A., (2006a). Multi-decennial to multi-millennial changes in maar-lake deposition during the last 45,000 year in South Tropical Africa (Lake Masoko, Tanzania). Palaeogeography, Palaeoclimatology, Palaeoecology 239, 334354.CrossRefGoogle Scholar
Garcin, Y., Vincens, A., Williamson, D., Guiot, J., Buchet, G., (2006b). Wet phases in tropical Southern Africa during the Last Glacial Period. Geophysical Research Letters 33, L07703 (Online early articles).CrossRefGoogle Scholar
Garcin, Y., Vincens, A., Williamson, D., Buchet, G., Guiot, J., (2007). Abrupt resumption of the African monsoon at the Younger Dryas-Holocene climatic transition. Quaternary Science Reviews 26, 690704.CrossRefGoogle Scholar
Gasse, F., Barker, P., Johnson, T.C., (2004). A 24,000 yr diatom record from the northern basin of Lake Malawi. Odada, E.O., Olago, D.O., The East African great lakes: Limnology, palaeolimnology and biodiversity. Springer Netherlands, Amsterdam., 393414.Google Scholar
Grimm, E.C., (1987). CONISS: A Fortran 77 program for stratigraphically constrained cluster analysis by method of incremental sum of squares. Computer Geosciences 13, 1335.CrossRefGoogle Scholar
Grosse-Brauckmann, G., (1986). Analysis of vegetative plant macrofossils. Berglund, B.E., Handbook of Holocene palaecology and paleohydrology. Wiley, Chichester, UK., 591618.Google Scholar
Hamilton, A.C., (1976). The significance of patterns of distribution shown by forest plants and animals in tropical Africa for the reconstruction of Upper Pleistocene palaeoenvironments: A review. Palaeoecology of Africa 9, 6397.Google Scholar
Hamilton, A.C., Bensted-Smith, R., (1989). Forest conservation in the East Usambara Mountains, Tanzania. IUCN, Gland., 4546.Google Scholar
Hamilton, A.C., (1982). Environmental history of East Africa: A study of the Quaternary. Academic Press, London, UK., 328.Google Scholar
Hamilton, A.C., Taylor, D., Vogel, J.C., (1986). Early forest clearances and environmental degradation in south-west Uganda. Nature 320, 164167.CrossRefGoogle Scholar
Hamilton, A.C., Ruffo, C.K., Mwasha, I.V., Mmari, C., Lovett, J.C., (1989). A survey of forest types on the East Usambara using the variable-area tree plot method. Hamilton, A.C., Bensted-Smith, R., Forest conservation in the East Usambara Mountains, Tanzania. IUCN, Gland., 213225.Google Scholar
Hawthorne, W.D., (1993). East African coastal forest botany. Lovett, J.C., Wasser, S.K., Biogeography and ecology of the rain forests of Eastern Africa. Cambridge University Press, Cambridge, UK., 5799.Google Scholar
Hooghiemstra, H., (1984). Vegetational and climatic history of the high plain of Bogotá, Colombia. Dissertationes Botanicae vol. 79, J. Cramer Verlag, Vaduz., 368 pp.Google Scholar
Johnson, T.C., Chan, Y., Beuning, K., Kelts, K., Ngobi, G., Verschuren, D., (1998). Biogenic silica profiles in Holocene cores from Lake Victoria: Implications for lake level history and initiation of the Victoria Nile. Lehman, J.T., Environmental change and response in East African lakes. Kluwer, Dordrecht., 7589.Google Scholar
Johnson, T.C., Brown, E.T., McManus, J., Barry, S., Barker, P., Gasse, F., (2002). A high-resolution paleoclimate record spanning the past 25,000 years in southern East Africa. Science 296, 113132.CrossRefGoogle ScholarPubMed
Jolly, D., Taylor, D.M., Marchant, R.A., Hamilton, A.C., Bonnefille, R., Riolett, G., (1997). Vegetation dynamics in central Africa since 18,000 yr BP: Pollen records from the interlacustrine highlands of Burundi, Rwanda and western Uganda. Journal of Biogeography 24, 495512.CrossRefGoogle Scholar
Kikula, I.S., (1986). The influence of fire on the composition of Miombo woodland of South West Tanzania. Oikos 46, 317324.CrossRefGoogle Scholar
Kingdon, J., (1989). Island Africa, the evolution of Africa's rare animals and plants. Princeton University Press, Princeton, NJ, USA., 287 pp.Google Scholar
Lind, E.M., Morrison, M.E.S., (1974). East African vegetation. Longman, London, UK., 257 pp.Google Scholar
Livingstone, D.A., (1980). Age of deglaciation in the Ruwenzori range, Uganda. Nature 194, 859860.CrossRefGoogle Scholar
Lovett, J.C., (1985). Moist forests of Tanzania. Swara 8, 89.Google Scholar
Lovett, J.C., (1988). Endemism and affinities of the Tanzanian montane forest flora. Goldblatt, P., Lowry, P.P., Proceedings of the Eleventh Plenary Meeting of the Association for the Taxonomic Study of Tropical Africa. Monographs in Systematic Botany from the Missouri Botanical Garden vol. 25, 591598.Google Scholar
Lovett, J.C., (1993). Eastern Arc moist forest flora. Lovett, J.C., Wasser, S.K., Biogeography and ecology of the rainforests of Eastern Africa. Cambridge University Press, Cambridge., 3355.Google Scholar
Lovett, J.C., (1994). Notes on secondary montane forests in eastern Tanzania. East African Natural History Society Bulletin 24, 2527.Google Scholar
Lovett, J.C., (1996). Elevational and latitudinal changes in tree associations and diversity in the Eastern Arc Mountains of Tanzania. Journal of Tropical Ecology 12, 629650.CrossRefGoogle Scholar
Lovett, J.C., (1998a). Continuous change in Tanzanian moist forest tree communities with elevation. Journal of Tropical Ecology 14, 719722.CrossRefGoogle Scholar
Lovett, J.C., (1998b). Botanical importance of the Eastern Arc. Journal of the East African Natural History Society 87, 5974.CrossRefGoogle Scholar
Lovett, J.C., (1999). Tanzanian forest tree plot diversity and elevation. Journal of Tropical Ecology 15, 689694.CrossRefGoogle Scholar
Lovett, J.C., Congdon, T.C.E., (1989). Notes on the Ihangana Forest and Luhega Forest near Uhafiwa, Uzungwa Mountains, Tanzania. East Africa Natural History Society Bulletin 19, 3031.Google Scholar
Lovett, J.C., Pócs, T., (1993). Assessment of the condition of the Catchment Forest Reserves: A botanical appraisal, Iringa Region. Catchment Forestry Report vol. 93.3, 38 pp.Google Scholar
Lovett, J.C., Clarke, G.P., Moore, R., Morrey, G., (2001). Elevational distribution of restricted range forest tree taxa in eastern Tanzania. Biodiversity and Conservation 10, 541550.CrossRefGoogle Scholar
Lovett, J.C., Marchant, R., Taplin, J., Kuper, W., (2005). The oldest rainforests in Africa: Stability or resilience for survival and diversity?. Purvis, A., Gittleman, J.L., Brooks, T.M., Phylogeny and conservation. Cambridge University Press, Cambridge, UK., 115125.Google Scholar
Marchant, R., (1997). Late Pleistocene and Holocene history of Bwindi-Impenetrable Forest National park, Southwest Uganda. Unpublished PhD thesis, University of Hull, .Google Scholar
Marchant, R., Taylor, D., (1998). Dynamics of montane forest in Central Africa during the late Holocene: A pollen-based record from western Uganda. The Holocene 8, 375381.CrossRefGoogle Scholar
Marchant, R., Taylor, D., Hamilton, A.C., (1997). Late Pleistocene and Holocene history at Mubwindi swamp, Southwest Uganda. Quaternary Research 47, 316328.CrossRefGoogle Scholar
Marchant, R., Mumbi, C., Behera, S., Yamagata, T., (2006). The Indian Ocean Dipole—The unsung driver of climatic variability in East Africa. African Journal of Ecology 45, 416.CrossRefGoogle Scholar
Merdaci, O., (1998). Changements climatiques au cours des derniers 30,000 ans en Afrique sud equatoriale (Tanzanie) per l’etude des pigments et phenols lacustres. Universite Aix-Marseille III, Aix-en-Provence. PhD thesis.Google Scholar
Meyers, P.A., (1992). Organic geochemical proxies of paleocenographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry 27, 213250.CrossRefGoogle Scholar
Minja, T.R.A., (1991). A visit report on Kising'a-Rugaro Catchment Forest Reserve. Catchment Forest Office files Forestry and Beekeeping Division, Ministry of Natural resources and Tourism, Dar Es Salaam, Tanzania., 17 pp.Google Scholar
Muzuka, A.N.N., Ryner, M., Holmgren, K., (2004). 12,000-year, preliminary results of the stable nitrogen and carbon isotope record from the Empakaai Crater Lake sediments, Northern Tanzania. Journal of African Earth Sciences 40, 293303.CrossRefGoogle Scholar
Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, A.B., Kent, J., (2000). Biodiversity hotspots for conservation priorities. Nature 403, 853858.CrossRefGoogle ScholarPubMed
Nagai, T., Kitamura, Y., Endoh, M., Tokioka, T., (1995). Coupled atmosphere-ocean model simulations of El Niño/Southern Oscillation with and without an active Indian Ocean. Journal of Climate 8, 314.2.0.CO;2>CrossRefGoogle Scholar
Nicholson, S.E., (1996). A review of climate dynamics and climate variability in eastern Africa. Johnson, T., Odada, E.O., The limnology, climatology and paleoclimatology of the East African lakes. Gordon and Breach, Toronto, Ontario, Canada., 2556.Google Scholar
Olago, D.O., Street-Perrott, F.A., Perrott, R.A., Ivanovich, M., Harkness, D.D., (2001). U/Th and 14C isotope dating of lake sediments from Sacred Lake and Lake Nkunga, Kenya. African Journal of Science and Technology (AJST) Science and Engineering Series 2, 3646.Google Scholar
O'Leary, M.H., (1981). Carbon isotopic fractionation in plants. Phytochemistry 20, 553567.CrossRefGoogle Scholar
O'Leary, M.H., (1988). Carbon isotopes in photosynthesis: Fractionation techniques may reveal new aspects of carbon dynamics in plants. Bioscience 38, 328336.CrossRefGoogle Scholar
Ryner, M.A., Bonnefille, R., Holmgren, K., Muzuka, A., (2006). Vegetation changes in Empakaai Crater, Northern Tanzania, at 14,800–9300 cal yr BP. Review of Palaeobotany and Palynology 140, 163174.CrossRefGoogle Scholar
Rodgers, W.A., Mziray, W., Shashira, E.K., (1985). The extents of forest cover in Tanzania using satellite imagery. Institute of Resource Assessment, University of Dar es Salaam. Research Paper 12, 1624.Google Scholar
Roubik, D.W., Moreno, P.J.E., (1991). Pollen and spores of Barro Colorado Island, Panama. Monographs in Systematic Botany vol. 36, Missouri Botanical Garden, USA., 268 pp.Google Scholar
Rundell, P.A., Smith, A.P., Meiner, F.C., (1994). Tropical alpine environments, plants forms and function. Cambridge University Press, Cambridge., 367 pp.Google Scholar
Street-Perrott, F.A., Huang, Y., Perrott, R.A., Eglinton, G., Barker, P., Ben-Khelifa, L., Harkness, D.D., Ivanovich, M., Olago, D.O., (1997). Impact of lower atmospheric CO2 on tropical mountain ecosystems: Carbon isotope evidence. Science 278, 14221426.CrossRefGoogle Scholar
Stute, M., Forster, M., Frishkorn, H., Serejo, A., Clark, J.F., Schlosser, P., Broecker, W.S., Bonani, G., (1995). Cooling of tropical Brazil (5°C) during the last glacial maximum. Science 269, 379383.CrossRefGoogle ScholarPubMed
Tallents, L.A., Lovett, J.C., Hall, J.B., Hamilton, A.C., (2005). Phylogenetic diversity of forest trees in the Usambara mountains of Tanzania: Correlations with altitude. Botanical Journal of the Linnean Society 148, 217228.CrossRefGoogle Scholar
Taylor, D.M., (1990). Late Quaternary pollen records from two Ugandan mires: Evidence for environmental change in the Rukiga Highlands of southwest Uganda. Palaeogeography, Palaeoclimatology, Palaeoecology 80, 283300.CrossRefGoogle Scholar
Taylor, D., Marchant, R., Robertshaw, P., (1999). A sediment-based history of medium altitude forest in central Africa: A record from Kabata Swamp, Ndale volcanic field, Uganda. Journal of Ecology 87, 303315.CrossRefGoogle Scholar
Thévenon, F., Williamson, D., Taieb, M., (2002). A 22 ka sedimentological record from Lake Rukwa, South-west Tanzania: Environmental, chonostratigraphic and climatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 187, 285294.CrossRefGoogle Scholar
Thévenon, F., Williamson, D., Vincens, A., Taieb, M., Merdaci, O., Decobert, M., Buchet, G., (2003). A Late Holocene charcoal record from Lake Massoko, SW Tanzania: climatic and anthropological implications. The Holocene 13, 785792.CrossRefGoogle Scholar
Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Henderson, K.A., Brecher, H.H., Zagorodnov, V.S., Mashiotta, T.A., Lin, P.-N., Mikhalenko, V.N., Hardy, D.R., Beer, J., (2002). Kilimanjaro ice core records: Evidence of Holocene climate change in tropical Africa. Science 298, 598–593.CrossRefGoogle ScholarPubMed
Tieszen, L.L., (1991). Natural variations in the carbon isotopic values of plants: Implications for archaeology, ecology and paleoecology. Journal of Archaeological Science 18, 227248.CrossRefGoogle Scholar
Trewartha, G.T., (1981). The Earth's problem climates. The University of Wisconsin Press, Madison, USA., 134158.Google Scholar
Van Geel, B., (1978). A palaeoecological study of Holocene peat bog sections in Germany and the Netherlands based on the analysis pollen, spores and macro- and microscopic remains of fungi, algae, cormophytes and animals. Review of Palaeobotany and Palynology 25, 1120.CrossRefGoogle Scholar
Van Geel, B., Buurman, J., Brinkkemper, O., Schelvis, J., Aptroot, A., Van Reenen, G., Hakbijl, T., (2003). Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. Journal of Archaeological Science 30, 873883.CrossRefGoogle Scholar
Van Zinderen Bakker, E., Coetzee, J.A., (1988). A review of Late Quaternary pollen studies in East, Central and Southern Africa. Review of Palaeobotany and Palynology 55, 155174.CrossRefGoogle Scholar
Vincens, A., Williamson, D., Thevenon, F., Taieb, M., Buchet, G., Decobert, M., Thouveny, N., (2003). Pollen-based vegetation changes in southern Tanzania during the last 4200 years: Climate change and/or human impact. Palaeogeography, Palaeoclimatology, Palaeoecology 198, 321334.CrossRefGoogle Scholar
Vincens, A., Garcin, Y., Buchet, G., (2007). Influence of rainfall seasonality on African lowland vegetation during the Late Quaternary: Pollen evidence from Lake Masoko, Tanzania. Journal of Biogeography (Online early articles).CrossRefGoogle Scholar
White, F., (1978). The Afromontane region. Werger, M.J.A., Biogeography and ecology of Southern Africa. Kluwer, The Hague, The Netherlands., 463513.Google Scholar
White, F., (1981). The history of the Afromontane archipelago and the scientific need for its conservation. African Journal of Ecology 19, 3354.CrossRefGoogle Scholar
White, F., (1983). Vegetation of Africa: A descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa. UNESC, Paris., 356 pp.Google Scholar
Williamson, D., Jackson, M.J., Banerjee, S.K., Marvin, J., Merdaci, O., Thouveny, N., Decobert, M., Gibert-Massault, E., Massault, M., Mazaudier, D., Taieb, M., (1999). Magnetic signatures of hydrological change in a tropical maar lake (Lake Massoko, Tanzania) : preliminary results. Physics and Chemistry of the Earth Part A Solid Earth and Geodesy 24, 799803.CrossRefGoogle Scholar
Wooller, M.J., Agnew, A.D.Q., Mathai, S., Swain, D.L., Street-Perrott, F.A., (2001). An altitudinal and stable carbon isotope survey of grasses on Mount Kenya, East Africa. Journal of East African Natural History 90, 6985.CrossRefGoogle Scholar
Wooller, M.J., Swain, D.L., Ficken, K.J., Agnew, A.D.Q., Street-Perrott, F.A., (2003). Late Quaternary vegetation changes around Lake Rutundu, Mount Kenya, East Africa: Evidence from grass cuticles, pollen and stable carbon isotopes. Journal of Quaternary Science 18, 315.CrossRefGoogle Scholar
Wooller, M.J., Smallwood, B., Behling, H., Fogel, M., (2004). Mangrove ecosystem dynamics and elemental cycling at Twin Cays, Belize, during the Holocene. Journal of Quaternary Science 19, 703711.CrossRefGoogle Scholar
Wooller, M., Fogel, J., Wilkie, M., Johnson, A., (2005). Stable isotope characteristics across a sharp ecotone in Wolfe Creek Meteorite Crater, Western Australia: Palaeoecological implications. Oecologia 145, 100112.CrossRefGoogle Scholar