Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T03:50:04.559Z Has data issue: false hasContentIssue false

Cool, wet conditions late in the Younger Dryas in semi-arid New Mexico

Published online by Cambridge University Press:  20 January 2017

Stephen A. Hall*
Affiliation:
Red Rock Geological Enterprises, 3 Cagua Road, Santa Fe, NM 87508, USA
William L. Penner
Affiliation:
Parametrix, 8801 Jefferson NE, Building B, Albuquerque, NM 87113, USA
Manuel R. Palacios-Fest
Affiliation:
Terra Nostra Earth Sciences Research, P.O. Box 37195, Tucson, AZ 85740, USA
Artie L. Metcalf
Affiliation:
Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
Susan J. Smith
Affiliation:
Bilby Research Center, Northern Arizona University, Flagstaff, AZ 86011, USA
*
*Corresponding author. E-mail address:redrock2@comcast.net (S.A. Hall).

Abstract

A thick alluvial sequence in central New Mexico contains the Scholle wet meadow deposit that traces upstream to a paleospring. The wet meadow sediments contain an abundant fauna of twenty-one species of freshwater and terrestrial mollusks and ten species of ostracodes. The mollusks and ostracodes are indicative of a local high alluvial water table with spring-supported perennial flow but without standing water. Pollen analysis documents shrub grassland vegetation with sedges, willow, and alder in a riparian community. Stable carbon isotopes from the wet meadow sediments have δ13C values ranging from − 22.8 to − 23.3‰, indicating that 80% of the organic carbon in the sediment is derived from C3 species. The wet meadow deposit is AMS dated 10,400 to 9700 14C yr BP, corresponding to 12,300 to 11,100 cal yr BP and overlapping in time with the Younger Dryas event (YD). The wet meadow became active about 500 yr after the beginning of the YD and persisted 400 yr after the YD ended. The Scholle wet meadow is the only record of perennial flow and high water table conditions in the Abo Arroyo drainage basin during the past 13 ka.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, B.G., (2005). Ice age lakes in New Mexico. Lucas, S.G., Morgan, G.S., Zeigler, K.E.,New Mexico's Ice Ages. New Mexico Museum of Natural History and Science, Bulletin No. 28, Albuquerque 107114.Google Scholar
Allen, B.G., Anderson, R.Y., (2000). A continuous high-resolution record of late Pleistocene climate variability from the Estancia basin, New Mexico. Geological Society of America Bulletin 112, 14441458.Google Scholar
Allen, C.D., Touchan, R., Swetnam, T.W., (1996). Overview of fire history in the Jemez Mountains. New Mexico: New Mexico Geological Society Guidebook, 47th Field Conference. 3536.Google Scholar
Allen, B.G., Love, D.W., Myers, R.G., (2009). Evidence for late Pleistocene hydrologic and climatic change from Lake Otero, Tularosa Basin, south-central New Mexico. New Mexico Geology 31, 922.Google Scholar
Alley, R.B., (2000a). The Younger Dryas cold interval as viewed from central Greenland. Quaternary Science Reviews 19, 213226.Google Scholar
Alley, R.B., (2000b). The Two-mile Time Machine; Ice Cores, Abrupt Climate Change, and Our Future. Princeton University Press, Princeton.Google Scholar
Anderson, R.Y., Allen, B.D., Menking, K.M., (2002). Geomorphic expression of abrupt climate change in southwestern North America at the glacial termination. Quaternary Research 57, 371381.Google Scholar
Anderson, R.S., Jass, R.B., Toney, J.L., Allen, C.D., Cisneros-Dozel, L.M., Hess, M., Heikoop, J., Fessenden, J., (2008). Development of the mixed conifer forest in northern New Mexico and its relationship to Holocene environmental change. Quaternary Research 69, 263275.Google Scholar
Armour, J., Fawcett, P.J., Geissman, J.W., (2002). 15 k.y. paleoclimatic and glacial record from northern New Mexico. Geology 30, 723726.Google Scholar
Ashbaugh, K.M., Metcalf, A.L., (1986). Fossil molluscan faunas from four spring-related deposits in the northern Chihuahuan Desert, southern New Mexico and westernmost Texas. New Mexico Bureau of Mines and Mineral Resources, Circular 200.Google Scholar
Asmerom, Y., Polyak, V.J., Burns, S.J., (2010). Variable winter moisture in the southwestern United States linked to rapid glacial climate shifts. Nature Geoscience 3, 114117.Google Scholar
Bement, L.C., Carter, B.J., Verney, R.A., Cummings, L.S., Sudbury, J.B., (2007). Paleo-environmental reconstruction and bio-stratigraphy, Oklahoma Panhandle, USA. Quaternary International 169–170, 3950.CrossRefGoogle Scholar
Blakey, J.F., (1966). Temperature of surface waters in the conterminous United States. U.S. Geological Survey Hydrologic Investigations Atlas HA-235.Google Scholar
Cheatum, E.P., Allen, D., (1966). Ecological significance of the fossil freshwater and land snails from the Domebo mammoth kill site. Leonhardy, F.C., 1966. Domebo: A Paleo-Indian Mammoth Kill in the Prairie-Plains. Museum of the Great Plains, Contributions No. 1, Lawton, Oklahoma 3643.Google Scholar
Cyr, H.J., (2004). Environmental and climatic interpretations of paleospring deposits. southern Kaibito Plateau, Navajo Nation, Arizona. MS thesis, Northern Arizona University, Flagstaff.Google Scholar
Davis, P.T., Menounos, B., Osborn, G., (2009). Holocene and latest Pleistocene alpine glacier fluctuations: a global perspective. Quaternary Science Reviews 28, 20212033.Google Scholar
Dello-Russo, R.D., Walker, P.A., Holliday, V.T., (2010). Recent research results from the Water Canyon site, a Clovis and late-Paleoindian locale in west-central New Mexico. Current Research in the Pleistocene 27, 7275.Google Scholar
Denton, G.H., Anderson, R.F., Toggweiler, J.R., Edwards, R.L., Schaefer, J.M., Putnam, A.E., (2010). The last glacial termination. Science 328, 16521656.Google Scholar
Dillon, T.J., Metcalf, A.L., (1997). Altitudinal distribution of land snails in some montane canyons in New Mexico. Metcalf, A.L., Smartt, R.A., Land Snails of New Mexico. New Mexico Museum of Natural History and Science, Bulletin No. 10, Albuquerque 109127.Google Scholar
Dillon jr., R.T., Robinson, J.D., Smith, T.P., Wethington, A.R., (2005). No reproductive isolation between freshwater pulmonate snails Physa virgata and P. acuta . The Southwestern Naturalist 50, 415422.Google Scholar
Donart, G.B., Sylvester, D.D., Hickey, W.C., (1978). Potential Natural Vegetation, New Mexico: Soil Conservation Service, New Mexico Interagency Range Committee, Report No. 11.Google Scholar
Ellis, R.W., (1935). Glaciation in New Mexico. University of New Mexico Bulletin, Geological Series, vol. 5(1), , 31 pp.Google Scholar
Ferring, C.R., (2001). The archaeology and paleoecology of the Aubrey Clovis site (41DN479) Denton County, Texas: Center for Environmental Archaeology, University of North Texas, Denton, and U.S. Army Corps of Engineers, Fort Worth District, Texas.Google Scholar
Grootes, P.M., Stuiver, M., White, J.W.C., Johnsen, S., Jouzel, J., (1993). Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552554.Google Scholar
Haas, H.M., Holliday, V.T., Stuckenrath, R., (1986). Dating of Holocene stratigraphy with soluble and insoluble organic fractions at the Lubbock Lake archaeological site, Texas. Radiocarbon 28, 2A, 473485.Google Scholar
Hall, S.A., (2001). Geochronology and paleoenvironments of the glacial-age Tahoka Formation, Texas and New Mexico. New Mexico Geology 23, 7177.Google Scholar
Hall, S.A., (2005). Ice Age vegetation and flora of New Mexico. Lucas, S.G., Morgan, G.S., Zeigler, K.E., New Mexico's Ice Ages. New Mexico Museum of Natural History and Science, Bulletin No. 28, Albuquerque 171183.Google Scholar
Hall, S.A., Goble, R.J., (2006). Geomorphology, stratigraphy, and luminescence age of the Mescalero Sands, southeastern New Mexico. Land, L., Lueth, V.W., Raatz, W., Boston, P., Love, D.L., Caves and Karst of Southeastern New Mexico: New Mexico Geological Society Guidebook, 57th Field Conference. 297310.Google Scholar
Hall, S.A., Goble, R.J., (2011). New optical age of the Mescalero sand sheet, southeastern New Mexico. New Mexico Geology 33, 916.Google Scholar
Hall, S.A., Miller, M.R., Goble, R.J., (2010). Geochronology of the Bolson sand sheet, New Mexico and Texas, and its archaeological significance. Geological Society of America Bulletin 122, 19501967.Google Scholar
Hall, S.A., Penner, W., Ellis, M., (2009). Arroyo cutting and vegetation change in Abo Canyon, New Mexico: evidence from repeat photography along the Santa Fe Railway. Lueth, V.W., Lucas, S.G., Chamberlin, R.M., Geology of the Chupadera Mesa Region: New Mexico Geological Society Guidebook, 60th Field Conference. 429437.Google Scholar
Hall, S.A., Riskind, D.H., (2010). Palynology, radiocarbon dating, and woodrat middens: new applications at Hueco Tanks, Trans-Pecos Texas. Journal of Arid Environments 74, 725730.Google Scholar
Hall, S.A., Valastro jr., S., (1995). Grassland vegetation in the Southern Great Plains during the last glacial maximum. Quaternary Research 44, 237245.CrossRefGoogle Scholar
Hart, W.S., Quade, J., Madsen, D.B., Kaufman, D.S., Oviatt, C.G., (2004). The 87Sr/86Sr ratios of lacustrine carbonates and lake-level history of the Bonneville paleolake system. Geological Society of America Bulletin 116, 11071119.CrossRefGoogle Scholar
Haury, E.W., Antevs, E., Lance, J.F., (1953). Artifacts with mammoth remains, Naco, Arizona. American Antiquity 19, 124.Google Scholar
Haury, E.W., Sayles, E.B., Wasley, W.W., (1959). The Lehner mammoth site. American Antiquity 25, 230.Google Scholar
Haynes, C.V. Jr.. (1995). Geochronology of environmental change, Clovis type site, Blackwater Draw, New Mexico. Geoarchaeology 14, 455470.Google Scholar
Haynes, C.V. Jr.. (2008). Younger Dryas “black mats” and the Rancholabrean termination in North America. Proceedings of the National Academy of Science of the United States of America 105, 65206525.CrossRefGoogle ScholarPubMed
Haynes, C.V. Jr., Haury, E.W., (1982). Archaeological investigations at the Lehner site, Arizona. National Geographic Society Research Reports 14, 325334.Google Scholar
Haynes, C.V. Jr., Huckell, B.B., (2007). Murray Springs, A Clovis site with multiple activity areas in the San Pedro Valley, Arizona. Anthropological Papers No. 71, University of Arizona Press, Tucson.Google Scholar
Haynes jr., C.V., Long, A., Jull, A.J.T., (1987). Radiocarbon dates at Wilcox Playa, Arizona, bracket the Clovis occupation surface. Current Research in the Pleistocene 4, 124126.Google Scholar
Haynes jr., C.V., Stanford, D.J., Jodry, M., Dickenson, J., Montgomery, J.L., Shelley, P.H., Rovner, I., Agogino, G.A., (1999). A Clovis well at the type site 11,500 B.C.: the oldest well in America. Geoarchaeology 14, 455470.Google Scholar
Hendrickson, D.A., Minckley, W.L., (1984). Ciénegas—vanishing climax communities of the American Southwest. Desert Plants 6, 131175.Google Scholar
Holliday, V.T., (1985). Archaeological geology of the Lubbock Lake site, southern High Plains of Texas. Geological Society of America Bulletin 96, 14831492.Google Scholar
Holliday, V.T., Huckell, B.B., Weber, R.H., Hamilton, M.J., Reitze, W.T., Mayer, J.H., (2009). Geoarchaeology of the Mockingbird Gap (Clovis) site, Jornada del Muerto, New Mexico. Geoarchaeology 24, 348370.Google Scholar
Jiménez-Moreno, G., Fawcett, P.J., Anderson, R.S., (2008). Millennial- and centennial-scale vegetation and climate changes during the late Pleistocene and Holocene from northern New Mexico (USA). Quaternary Science Reviews 27, 14421452.Google Scholar
Jiménez-Moreno, G., Anderson, R.S., Atudorei, V., Toney, J.L., (2011). A high-resolution record of climate, vegetation, and fire in the mixed conifer forest of northern Colorado. Geological Society of America Bulletin 123, 240254.Google Scholar
Karlstrom, E.T., (1986). Stratigraphic and pedologic evidence for a relatively moist early Holocene on Black Mesa, northeastern Arizona. Current Research in the Pleistocene 3, 8182.Google Scholar
LaBelle, J.M., Holliday, V.T., Meltzer, D.J., (2003). Early Holocene Paleoindian deposits at Nall Playa, Oklahoma Panhandle, USA. Geoarchaeology 18, 534.Google Scholar
Leonard, A.B., and Frye, J.C., (1975). Pliocene and Pleistocene deposits and molluscan faunas, east-central New Mexico. New Mexico Bureau of Mines and Mineral Resources, Memoir 30.Google Scholar
(1966). Domebo: a Paleo-Indian mammoth kill in the Prairie-Plains. Leonhardy, F.C., Museum of the Great Plains, Contributions No. 1, Lawton, Oklahoma.Google Scholar
Love, D.W., Allen, B.D., Morgan, G.S., Myers, R.G., (2011). Quaternary stratigraphy and paleontology exposed along Salt Creek, northern Tularosa Basin, south-central New Mexico. New Mexico Geology 33, 4849.Google Scholar
Marlon, J.R., Bartlein, P.J., Walsh, M.K., Harrison, S.P., Brown, K.J., Edwards, M.E., Higuera, P.E., Power, M.J., Anderson, R.S., Briles, C., Brunelle, A., Carcaillet, C., Daniels, M., Hu, F.S., Lavoie, M., Long, C., Minckley, T., Richard, P.J.H., Scott, A.C., Shafer, D.S., Tinner, W., Umbanhowar jr., C.E., Whitlock, C., (2009). Wildfire responses to abrupt climate change in North America. Proceedings of the National Academy of Science of the United States of America 106, 25192524.Google Scholar
Meade, J.I., (2007). Molluscan faunas of the San Pedro Valley, Arizona. Haynes jr., C.V., Huckell, B.B., Murray Springs, A Clovis Site with Multiple Activity Areas in the San Pedro Valley, Arizona. Anthropological Papers No. 71 University of Arizona Press, 6282.Google Scholar
Metcalf, A.L., (1967). Late Quaternary Mollusks of the Rio Grande Valley, Caballo Dam, New Mexico, to El Paso, Texas. Science Series No. 1 Texas Western Press, El Paso.Google Scholar
Metcalf, A.L., (2011). Fossil mollusks from Scholle cienega, Appendix C. Penner, W., Abo Canyon Second Track Report—Mitigation Report. Albuquerque, Parametrix Report No. PMX-2011-8 Vol. 1, C1C13.Google Scholar
Metcalf, A.L., Smartt, R.A., (1997). Land snails of New Mexico. New Mexico Museum of Natural History and Science, Bulletin No. 10, Albuquerque.Google Scholar
National Oceanic and Atmospheric Administration (NOAA), . ((NOAA), 2008). Climatological Data, Annual Summary, New Mexico, 2008. National Climatic Data Center, Ashville, NC.Google Scholar
Nordt, L., von Fischer, J., Tieszen, L., (2007). Late Quaternary temperature record from buried soils of the North American Great Plains. Geology 35, 159162.CrossRefGoogle Scholar
Nordt, L., von Fischer, J., Tieszen, L., Tubbs, J., (2008). Coherent changes in relative C4 plant productivity and climate during the late Quaternary in the North American Great Plains. Quaternary Science Reviews 27, 16001611.CrossRefGoogle Scholar
Oviatt, C.G., Miller, D.M., McGeehin, J.P., Zachary, C., Mahan, S., (2005). The Younger Dryas phase of Great Salt Lake, Utah, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 219, 263284.Google Scholar
Palacios-Fest, M.R., (1994). Nonmarine ostracode shell chemistry from Hohokam irrigation canals in Central Arizona: a paleohydrochemical tool for the interpretation of prehistoric human occupation in the North American Southwest. Geoarchaeology 9, 129.Google Scholar
Palacios-Fest, M.R., (2011). Younger Dryas ostracode paleoecology of Scholle cienega, Abo Arroyo, New Mexico. Appendix DPenner, W., Abo Canyon Second Track Project—Mitigation Report. Albuquerque, Parametrix Report No. PMX-2011-8 Vol. 1, D1D22.Google Scholar
Pigati, J.S., Bright, J.E., Shanahan, T.M., Mahan, S.A., (2009). Late Pleistocene paleohydrology near the boundary of the Sonoran and Chihuahuan deserts, southeastern Arizona, USA. Quaternary Science Reviews 28, 286300.Google Scholar
Plummer, L.N., Bexfield, L.M., Anderholm, S.K., Sanford, W.E., Busenberg, E., (2004). Geochemical characterization of ground-water flow in the Santa Fe Group aquifer system, Middle Rio Grande Basin, New Mexico. U.S. Geological Survey Water-Resources Investigations Report 03-4131.Google Scholar
Polyak, V.J., Rasmussen, J.B.T., Asmerom, Y., (2004). Prolonged wet period in the southwestern United States through the Younger Dryas. Geology 32, 58.Google Scholar
Quade, J., Forester, R.M., Pratt, W.L., Carter, C., (1998). Black mats, spring-fed streams, and late-glacial-age recharge in the southern Great Basin. Quaternary Research 49, 129148.Google Scholar
Ray, L.L., (1940). Glacial chronology of the southern Rocky Mountains. Geological Society of America Bulletin 51, 18511917.Google Scholar
Reasoner, M.A., Jodry, M.A., (2000). Rapid response of alpine timberline vegetation to the Younger Dryas climate oscillation in the Colorado Rocky Mountains, USA. Geology 28, 5154.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., Weyhenmeyer, C.E., (2009). IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, 11111150.Google Scholar
Richmond, G.M., (1965). Glaciation of the Rocky Mountains. Wright jr., H.E., Frey, D.G., The Quaternary of the United States. Princeton University Press, Princeton, N. J.. 217230.Google Scholar
Scott, L.A., Elrick, M., Connell, S., Karlstrom, K., (2005). Preliminary geologic map of the Scholle 7.5-minute quadrangle. New Mexico Bureau of Geology and Mineral Resources, OF-GM 99.Google Scholar
Stuiver, M., Reimer, P.J., (1993). Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215230.Google Scholar
Stuiver, M., Grootes, P.M., Braziunas, T.F., (1995). The GISP2 δ18O climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes. Quaternary Research 44, 341354.Google Scholar
Swetnam, T.W., Baisan, C.H., (1996). Historical fire regime patterns in the southwestern United States since AD 1700. Allen, C.D., Fire Effects in Southwestern Forests: Proceedings of the Second La Mesa Fire Symposium. Fort Collins, USDA Rocky Mountain Forest and Range Experiment Station, Gen. Tech. Rep. RM-GTR-286 1132.Google Scholar
Taylor, D.W., (1980). Late Cenozoic freshwater Mollusca of New Mexico: an annotated bibliography. New Mexico Bureau of Mines and Mineral Resources, Open File Report 124.Google Scholar
Teeri, J.A., Stowe, L.G., (1976). Climatic patterns and the distribution of C4 grasses in North America. Oecologia 23, 112.Google Scholar
Wagner, J.D.M., Cole, J.E., Beck, J.W., Patchett, P.J., Henderson, G.M., Barnett, H.R., (2010). Moisture variability in the southwestern United States linked to abrupt glacial climate change. Nature Geoscience 3, 110113.Google Scholar
Waters, M.R., Stafford jr., T.W., (2007). Redefining the age of Clovis: implications for the peopling of the Americas. Science 315, 11221126.Google Scholar
Wesling, J.R., (1987). Glacial geology of Winsor Creek drainage basin, southern Sangre de Cristo Mountains, New Mexico. Menges, C., Enzel, Y., Harrison, B., Quaternary Tectonics, Landform Evolution, Soil Chronologies and Glacial Deposits—Northern Rio Grande Rift of New Mexico. Friends of the Pleistocene, Rocky Mountain Cell, Field Trip Guidebook. 177191.Google Scholar
Wesling, J.R., (1988). Glacial chronology and soil development in Winsor Creek drainage basin. southernmost Sangre de Cristo Mountains, New Mexico: MS thesis, University of New Mexico, Albuquerque.Google Scholar
Zeuner, F.E., (1970). Dating the Past, an Introduction to Geochronology (Reprint of Fourth Edition, 1958). Hafner Publishing Co., Darien, Connecticut.Google Scholar