Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T17:14:44.270Z Has data issue: false hasContentIssue false

Exploring pathways to late Holocene increased surface wetness in subarctic peatlands of eastern Canada

Published online by Cambridge University Press:  17 May 2018

Simon van Bellen*
Affiliation:
Geotop-Université du Québec à Montréal, Montreal, Canada
Michelle Garneau
Affiliation:
Geotop-Université du Québec à Montréal, Montreal, Canada Département de géographie, Université du Québec à Montréal, Montreal, Canada
Andy Baird
Affiliation:
School of Geography, University of Leeds, Leeds, UK
Marc-André Bourgault
Affiliation:
Geotop-Université du Québec à Montréal, Montreal, Canada Département des sciences de la Terre et de l’atmosphère, Université du Québec à Montréal, Montreal, Canada
Anne Quillet
Affiliation:
Geography, University of Exeter, Exeter, UK
*
*Corresponding author at: Geotop-Université du Québec à Montréal, Montreal, Canada. E-mail address: van_bellen.simon@uqam.ca (S. van Bellen).

Abstract

The poor fens of the Laforge region, northeastern Canada, have developed under subarctic conditions. They are characterized by a microtopography of large pools and low, narrow strings. Paleorecords suggest some of these systems were once ombrotrophic and relatively dry. Taking account of their current bioclimatic position, we aimed to explore the possible pathways towards the current wet state, a process referred to as “aqualysis”. We combined paleoecological methods applied to a peat core with conceptual modelling to identify factors that might plausibly explain aqualysis. Reconstructions showed the Abeille peatland became minerotrophic with high water tables between 2400 and 2100 cal yr BP. Conceptual modelling, supported by simulations using the numerical DigiBog model, allowed us to identify the effects of cooling and increased precipitation on productivity, decay, peat hydraulic conductivity and vertical peat accumulation. Both cooling and increased precipitation were required for aqualysis to occur and for wet surface conditions to persist to the present day. Increased recharge from the catchment, which also restricted drainage from the peatland center laterally, was likely critical for the development of minerotrophic conditions. The scenario of cooling and wetting in these peatlands is supported by available paleoclimate records for eastern Canada.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allard, M., Seguin, M.K., 1987. The Holocene evolution of permafrost near the tree line, on the eastern coast of Hudson Bay (northern Quebec). Canadian Journal of Earth Sciences 24, 22062222.Google Scholar
Arlen-Pouliot, Y., Payette, S., 2015. The influence of climate on pool inception in boreal fens. Botany 93, 637649.Google Scholar
Asselin, H., Payette, S., 2005. Late Holocene opening of the forest tundra landscape in northern Québec, Canada. Global Ecology and Biogeography 14, 307313.CrossRefGoogle Scholar
Baird, A.J., Morris, P.J., Belyea, L.R., 2012. The DigiBog peatland development model 1: rationale, conceptual model, and hydrological basis. Ecohydrology 5, 242255.Google Scholar
Bartsch, I., Moore, T.R., 1985. A preliminary investigation of primary production and decomposition in four peatlands near Schefferville, Québec. Canadian Journal of Botany 63, 12411248.CrossRefGoogle Scholar
Belyea, L.R., Clymo, R.S., 2001. Feedback control of the rate of peat formation. Proceedings of the Royal Society B: Biological Sciences 268, 13151321.Google Scholar
Belyea, L.R., Lancaster, J., 2002. Inferring landscape dynamics of bog pools from scaling relationships and spatial patterns. Journal of Ecology 90, 223234.Google Scholar
Berger, A., Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297317.Google Scholar
Bhiry, N., Robert, É.C., 2006. Reconstruction of changes in vegetation and trophic conditions of a palsa in a permafrost peatland, subarctic Québec, Canada. Ecoscience 13, 5665.Google Scholar
Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.Google Scholar
Blackford, J.J., Chambers, F.M., 1993. Determining the degree of peat decomposition for peat-based palaeoclimatic studies. International Peat Journal 5, 724.Google Scholar
Booth, R.K., 2010. Testing the climate sensitivity of peat-based paleoclimate reconstructions in mid-continental North America. Quaternary Science Reviews 29, 720731.Google Scholar
Booth, R.K., Jackson, S.T., 2003. A high-resolution record of late-Holocene moisture variability from a Michigan raised bog, USA. The Holocene 13, 863876.CrossRefGoogle Scholar
Bridgham, S.D., Pastor, J., Dewey, B., Weltzin, J.F., Updegraff, K., 2008. Rapid carbon response of peatlands to climate change. Ecology 89, 30413048.Google Scholar
Carrer, G.E., Rousseau, A.N., St-Hilaire, A., Jutras, S., 2015. Mosaic surface storages of a small boreal catchment. Hydrological Processes 29, 845858.Google Scholar
Charman, D.J., 2007. Summer water deficit variability controls on peatland water-table changes: implications for Holocene palaeoclimate reconstructions. The Holocene 17, 217227.CrossRefGoogle Scholar
Charman, D.J., Barber, K.E., Blaauw, M., Langdon, P.G., Mauquoy, D., Daley, T.J., Hughes, P.D.M., Karofeld, E., 2009. Climate drivers for peatland palaeoclimate records. Quaternary Science Reviews 28, 18111819.CrossRefGoogle Scholar
Cliche Trudeau, N., Garneau, M., Pelletier, L., 2012. Methane fluxes from a patterned fen of the northeastern part of the La Grande river watershed, James Bay, Canada. Biogeochemistry 113, 409422.CrossRefGoogle Scholar
Cliche Trudeau, N., Garneau, M., Pelletier, L., 2014. Interannual variability in the CO2 balance of a boreal patterned fen, James Bay, Canada. Biogeochemistry 118, 371387.CrossRefGoogle Scholar
Comas, X., Slater, L., Reeve, A., 2011. Pool patterning in a northern peatland: Geophysical evidence for the role of postglacial landforms. Journal of Hydrology 399, 173184.CrossRefGoogle Scholar
Dean, W.E., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Research 44, 242248.Google Scholar
Dissanska, M., Bernier, M., Payette, S., 2009. Object-based classification of very high resolution panchromatic images for evaluating recent change in the structure of patterned peatlands. Canadian Journal of Remote Sensing 35, 189215.CrossRefGoogle Scholar
Foster, D., Wright, H. Jr, Thelaus, M., King, G., 1988a. Bog development and landform dynamics in central Sweden and south-eastern Labrador, Canada. Journal of Ecology 76, 11641185.CrossRefGoogle Scholar
Foster, D.R., Fritz, S.C., 1987. Mire development, pool formation and landscape processes on patterned fens in Dalarna, central Sweden. Journal of Ecology 75, 409437.Google Scholar
Foster, D.R., King, G.A., Santelmann, M.V., 1988b. Patterned fens of western Labrador and adjacent Quebec: phytosociology, water chemistry, landform features, and dynamics of surface patterns. Canadian Journal of Botany 66, 24022418.CrossRefGoogle Scholar
Frolking, S., Roulet, N.T., Tuittila, E., Bubier, J.L., Quillet, A., Talbot, J., Richard, P., 2010. A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation. Earth System Dynamics 1, 121.Google Scholar
Garneau, M., Tremblay, L., Magnan, G., 2017. Holocene pool formation in oligotrophic fens from boreal Québec in northeastern Canada. The Holocene 3, 396407.Google Scholar
Hoag, R.S., Price, J.S., 1995. A field-scale, natural gradient solute transport experiment in peat at a Newfoundland blanket bog. Journal of Hydrology 172, 171184.CrossRefGoogle Scholar
Holling, C.S., 1996. Engineering resilience versus ecological resilience. Engineering Within Ecological Constraints 31, 32.Google Scholar
Hopkinson, R.F., McKenney, D.W., Milewska, E.J., Hutchinson, M.F., Papadopol, P., Vincent, L.A., 2011. Impact of aligning climatological day on gridding daily maximum-minimum temperature and precipitation over Canada. Journal of Applied Meteorology and Climatology 50, 16541665.Google Scholar
Hutchinson, M.F., McKenney, D.W., Lawrence, K., Pedlar, J.H., Hopkinson, R.F., Milewska, E., Papadopol, P., 2009. Development and testing of Canada-wide interpolated spatial models of daily minimum–maximum temperature and precipitation for 1961–2003. Journal of Applied Meteorology and Climatology 48, 725741.CrossRefGoogle Scholar
Karofeld, E., Tõnisson, H., 2014. Spatio-temporal changes in bog pool bottom topography – temperature effect and its influence on pool development: an example from a raised bog in Estonia. Hydrological Processes 28, 958968.Google Scholar
Laine, J., Harju, P., Timonen, T., Laine, A., Tuittila, E.-S., Minkkinen, K., Vasander, H., 2009. The Intricate Beauty of Sphagnum Mosses: A Finnish Guide to Identification. Department of Forest Ecology, University of Helsinki, Helsinki, pp. 191.Google Scholar
Lamarre, A., Garneau, M., Asnong, H., 2012. Holocene paleohydrological reconstruction and carbon accumulation of a permafrost peatland using testate amoeba and macrofossil analyses, Kuujjuarapik, subarctic Québec, Canada. Review of Palaeobotany and Palynology 186, 131141.CrossRefGoogle Scholar
Lamarre, A., Magnan, G., Garneau, M., Boucher, É., 2013. A testate amoeba-based transfer function for paleohydrological reconstruction from boreal and subarctic peatlands in northeastern Canada. Quaternary International 306, 8896.CrossRefGoogle Scholar
Lamentowicz, M., Gałka, M., Lamentowicz, Ł., Obremska, M., Kühl, N., Lücke, A., Jassey, V.E.J., 2015. Reconstructing climate change and ombrotrophic bog development during the last 4000 years in northern Poland using biotic proxies, stable isotopes and trait-based approach. Palaeogeography, Palaeoclimatology, Palaeoecology 418, 261277.CrossRefGoogle Scholar
Loisel, J., Gallego-Sala, A.V., Yu, Z., 2012. Global-scale pattern of peatland Sphagnum growth driven by photosynthetically active radiation and growing season length. Biogeosciences 9, 27372746.Google Scholar
Magnan, G., Garneau, M., 2014. Climatic and autogenic control on Holocene carbon sequestration in ombrotrophic peatlands of maritime Quebec, eastern Canada. The Holocene 24, 10541062.Google Scholar
Marcisz, K., Tinner, W., Colombaroli, D., Kołaczek, P., Słowiński, M., Fiałkiewicz-Kozieł, B., Łokas, E., Lamentowicz, M., 2015. Long-term hydrological dynamics and fire history over the last 2000 years in CE Europe reconstructed from a high-resolution peat archive. Quaternary Science Reviews 112, 138152.CrossRefGoogle Scholar
Mauquoy, D., Yeloff, D., van Geel, B., Charman, D.J., Blundell, A., 2008. Two decadally resolved records from north-west European peat bogs show rapid climate changes associated with solar variability during the mid-late Holocene. Journal of Quaternary Science 23, 745763.Google Scholar
McKenney, D.W., Hutchinson, M.F., Papadopol, P., Lawrence, K., Pedlar, J., Campbell, K., Milewska, E., Hopkinson, R., Price, D., Owen, T., 2011. Customized spatial climate models for North America. Bulletin of American Meteorological Society, 16121622.Google Scholar
Moore, T.R., 1989. Growth and net production of Sphagnum at five fen sites, subarctic eastern Canada. Canadian Journal of Botany 67, 12031207.CrossRefGoogle Scholar
Morris, P.J., Baird, A.J., Belyea, L.R., 2012. The DigiBog peatland development model 2: ecohydrological simulations in 2D. Ecohydrology 5, 256268.CrossRefGoogle Scholar
Morris, P.J., Baird, A.J., Belyea, L.R., 2015a. Bridging the gap between models and measurements of peat hydraulic conductivity. Water Resources Research 51, 53535364.Google Scholar
Morris, P.J., Baird, A.J., Young, D.M., Swindles, G.T., 2015b. Untangling climate signals from autogenic changes in long-term peatland development. Geophysical Research Letters 42, 1078810797.Google Scholar
Ohlson, M., Økland, R.H., 1998. Spatial variation in rates of carbon and nitrogen accumulation in a boreal bog. Ecology 79, 27452758.CrossRefGoogle Scholar
Payette, S., Gagnon, R., 1985. Late Holocene deforestation and tree regeneration in the forest-tundra of Quebec. Nature 313, 570572.Google Scholar
Payette, S., Rochefort, L., 2001. Écologie des tourbières du Québec-Labrador. Les presses de l’Université Laval, Sainte-Foy, Québec City, Canada.CrossRefGoogle Scholar
Pratte, S., Garneau, M., De Vleeschouwer, F., 2017. Increased atmospheric dust deposition during the Neoglacial in a boreal peat bog from north-eastern Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 469, 3446.Google Scholar
R Core Team, 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
Reeve, A.S., Siegel, D.I., Glaser, P.H., 2000. Simulating vertical flow in large peatlands. Journal of Hydrology 227, 207217.Google Scholar
Rinne, J., Riutta, T., Pihlatie, M., Aurela, M., Haapanala, S., Tuovinen, J.-P., Tuittila, E.-S., Vesala, T., 2007. Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus B 59, 449457.CrossRefGoogle Scholar
Robinson, S., 2008. Conceptual Modelling for Simulation Part I: definition and requirements. The Journal of the Operational Research Society 59, 278290.CrossRefGoogle Scholar
Ruuhijärvi, R., 1983. The Finnish mire types and their regional distribution. In: Gore, A.J.P. (Ed.), Ecosystems of the World 4B: Mires: Swamp, Bog, Fen and Moor. Regional studies. Elsevier Scientific Publishing, Amsterdam.Google Scholar
Scheffer, R.A., Van Logtestijn, R.S.P., Verhoeven, J.T.A., 2001. Decomposition of Carex and Sphagnum litter in two mesotrophic fens differing in dominant plant species. Oikos 92, 4454.CrossRefGoogle Scholar
Schoning, K., Charman, D.J., Wastegård, S., 2005. Reconstructed water tables from two ombrotrophic mires in eastern central Sweden compared with instrumental meteorological data. The Holocene 15, 111118.CrossRefGoogle Scholar
Sillasoo, Ü., Mauquoy, D., Blundell, A., Charman, D., Blaauw, M., Daniell, J.R.G., Toms, P., Newberry, J., Chambers, F.M., Karofeld, E., 2007. Peat multi-proxy data from Männikjärve bog as indicators of late Holocene climate changes in Estonia. Boreas 36, 2037.Google Scholar
Sjors, H., 1983. Mires of Sweden. In: Gore, A.J.P. (Ed.), Ecosystems of the World 4B. Mires: Swam, Bog, Fen and Moor. Regional Studies. Elsevier Scientific Publishing, Amsterdam.Google Scholar
Swindles, G.T., Blundell, A., Roe, H.M., Hall, V.A., 2010. A 4500-year proxy climate record from peatlands in the North of Ireland: the identification of widespread summer ‘drought phases’? Quaternary Science Reviews 29, 15771589.CrossRefGoogle Scholar
Swindles, G.T., Morris, P.J., Baird, A.J., Blaauw, M., Plunkett, G., 2012. Ecohydrological feedbacks confound peat-based climate reconstructions. Geophysical Research Letters 39, L11401.CrossRefGoogle Scholar
Tardif, S. St., Hilaire, A., Roy, R., Bernier, M., Payette, S., 2009. Statistical properties of hydrographs in minerotrophic fens and small lakes in mid-latitude Québec, Canada. Canadian Water Resources Journal 34, 365380.Google Scholar
Väliranta, M., Korhola, A., Seppa, H., Tuittila, E.S., Sarmaja-Korjonen, K., Laine, J., Alm, J., 2007. High-resolution reconstruction of wetness dynamics in a southern boreal raised bog, Finland, during the late Holocene: a quantitative approach. The Holocene 17, 10931107.Google Scholar
van Bellen, S., Garneau, M., Ali, A.A., Lamarre, A., Robert, É.C., Magnan, G., Asnong, H., Pratte, S., 2013. Poor fen succession over ombrotrophic peat related to late Holocene increased surface wetness in subarctic Quebec, Canada. Journal of Quaternary Science 28, 748760.Google Scholar
van Bellen, S., Garneau, M., Booth, R.K., 2011. Holocene carbon accumulation rates from three ombrotrophic peatlands in boreal Quebec, Canada: impact of climate-driven ecohydrological change. The Holocene 21, 12171231.Google Scholar
van Geel, B., Renssen, H., 1998. Abrupt climate change around 2,650 BP in North-West Europe: evidence for climatic teleconnections and a tentative explanation. In: Brown, N., Issar, A.S. (Eds.), Water, Environment and Society in Times of Climatic Change. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 2141.Google Scholar
Viau, A.E., Gajewski, K., 2009. Reconstructing millennial-scale, regional paleoclimates of boreal Canada during the Holocene. Journal of Climate 22, 316330.Google Scholar
Viau, A.E., Gajewski, K., Sawada, M.C., Fines, P., 2006. Millennial-scale temperature variations in North America during the Holocene. Journal of Geophysical Research, 111.Google Scholar
White, M., Payette, S., 2016. Pool size structure indicates developmental stages of boreal fens. Botany 94, 643651.Google Scholar
Young, D.M., Baird, A.J., Morris, P.J., Holden, J., 2017. Simulating the long‐term impacts of drainage and restoration on the ecohydrology of peatlands. Water Resources Research 53, 65106522.Google Scholar
Zoltai, S.C., 1995. Permafrost distribution in peatlands of West-Central Canada during the Holocene Warm Period 6000 years BP. Géographie physique et Quaternaire 49, 4554.Google Scholar