Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T21:58:05.152Z Has data issue: false hasContentIssue false

Millennial-scale dynamics of the winter cold tongue in the southern South China Sea over the past 26 ka and the East Asian winter monsoon

Published online by Cambridge University Press:  20 January 2017

Enqing Huang*
Affiliation:
State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
Jun Tian*
Affiliation:
State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
Stephan Steinke
Affiliation:
State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China MARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen D-28359, Germany
*
Corresponding authors. E. Huang is to be contacted now at MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany. J. Tian, State Key Laboratory of Marine Geology, Tongji University, 1239 Siping Road, Shanghai 200092, China. Fax: + 86 21 65988808.
Corresponding authors. E. Huang is to be contacted now at MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany. J. Tian, State Key Laboratory of Marine Geology, Tongji University, 1239 Siping Road, Shanghai 200092, China. Fax: + 86 21 65988808.

Abstract

Millennial-scale variations of the East Asian winter monsoon (EAWM) remain elusive due to sparse and controversial reconstructions. By compiling a variety of alkenone-based sea surface temperature (SST) estimates, we find that the west–east SST gradient in the southern South China Sea (SCS) well documents the temporal dynamics of the winter “cold tongue” off the southern Vietnam and by inference, variations in the EAWM intensity over the past 26 ka. Our results reveal that the winter “cold tongue” SSTs were significantly colder during Heinrich event 1 and the Younger Dryas event, resulting in an increased west–east SST gradient in the southern SCS due to a strengthened EAWM. Within dating uncertainties, an intensified EAWM during cold stadials was coeval with the shutdown or a reduction in strength of the Atlantic meridional overturning circulation (AMOC), exhibiting a strong linkage between the AMOC and the EAWM system. The west–east SST gradient also indicates an enhanced EAWM during the early Holocene, which may be induced by postglacial ice-sheet dynamics and a strong seasonal contrast in solar insolation. Our findings suggest that the EAWM was probably modulated by a complex interplay between the AMOC, solar insolation and ice-sheet dynamics on sub-orbital time scales.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altabet, M.A., Higginson, M.J., and Murray, D.W. The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2 . Nature 415, (2002). 159162.Google Scholar
An, Z. The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews 19, (2000). 171187.Google Scholar
An, Z., and Porter, S.C. Millennial-scale climatic oscillations during the last interglaciation in central China. Geology 25, 7 (1997). 603606.Google Scholar
Bard, E., Hamelin, B., Arnold, M., Montaggioni, L., Cabioch, G., Faure, G., and Rougerie, F. Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature 382, (1996). 241244.Google Scholar
Bard, E., Hamelin, B., and Delanghe-Sabatier, D. Deglacial meltwater pulse 1B and younger dryas sea levels revisited with boreholes at Tahiti. Science 327, (2010). 12351237.Google Scholar
Barnett, T.P., Dümenil, L., Schlese, U., and Roeckner, E. The effect of Eurasian snow cover on global climate. Science 239, (1988). 504507.Google Scholar
Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., and Bonani, G. Correlations between climate records from north Atlantic sediments and Greenland ice. Nature 365, (1993). 143147.Google Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G. Persistent solar influence on North Atlantic climate during the Holocene. Science 294, (2001). 21302136.Google Scholar
Broecker, W.S. Does the trigger for abrupt climate change reside in the ocean or in the atmosphere?. Science 300, (2003). 15191522.CrossRefGoogle ScholarPubMed
Burns, S.J., Fleitmann, D., Matter, A., Kramers, J., and Al-Subbary, A.A. Indian Ocean climate and an absolute chronology over Dansgaard/Oeschger events 9 to 13. Science 301, (2003). 13651367.Google Scholar
Chen, F., Yu, Z., Yang, M., Ito, E., Wang, S., Madsen, D.B., Huang, X., Zhao, Y., Sato, T., Birks, H.J.B., Boomer, I., Chen, J., An, C., and Wünnemann, B. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews 27, (2008). 351364.Google Scholar
Chen, F.H., Bloemendal, J., Wang, J.M., Li, J.J., and Oldfield, F. High-resolution multi-proxy climate records from Chinese loess: evidence for rapid climatic changes over the last 75 kyr. Palaeogeography, Palaeoclimatology, Palaeoecology 130, (1997). 323335.Google Scholar
Chen, M.-T., Huang, C.-C., Pflaumann, U., Waelbroeck, C., and Kucera, M. Estimating glacial western Pacific sea-surface temperature: methodological overview and data compilation of surface sediment planktic foraminifer faunas. Quaternary Science Reviews 24, (2005). 10491062.Google Scholar
Chen, M.-T., and Huang, C.-Y. Ice volume forcing of winter monsoon climate in the South China Sea. Paleoceanography 13, 6 (1998). 622633.Google Scholar
Chen, M.-T., Wang, C.-H., Huang, C.-Y., Wang, P., Wang, L., and Sarnthein, M. A late Quaternary planktonic foraminifer faunal record of rapid climatic changes from the South China Sea. Marine Geology 156, (1999). 85108.Google Scholar
Chen, Y.-l.L., Chen, H.-Y., and Chung, C.-W. Seasonal variability of coccolithophore abundance and assemblage in the northern South China Sea. Deep-Sea Research II 54, (2007). 16171633.Google Scholar
Cheng, H., Edwards, R.L., Broecker, W.S., Denton, G.H., Kong, X., Wang, Y., Zhang, R., and Wang, X. Ice age terminations. Science 326, (2009). 248252.Google Scholar
Chiang, J.C.H., and Bitz, C.M. Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Climate Dynamics 25, (2005). 477496.Google Scholar
Chu, P.C., Edmons, N.L., and Fan, C.W. Dynamical mechanisms for the South China Sea seasonal circulation and thermohaline variabilities. Journal of Physical Oceanography 29, (1999). 29712989.Google Scholar
Chu, P.C., and Wang, G. Seasonal variability of thermohaline front in the central South China Sea. Journal of Oceanography 59, (2003). 6578.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E., Jouzel, J., and Bond, G. Evidence for general instability of the past climate from a 250-kyr ice-core record. Nature 364, (1993). 218220.CrossRefGoogle Scholar
de Garidel-Thoron, T., Beaufort, L., Linsley, B.K., and Dannenmann, S. Millennial-scale dynamics of the East Asian winter monsoon during the last 200,000 years. Paleoceanography 16, (2001). 112.Google Scholar
Denton, G.H., Alley, R.B., Comer, G.C., and Broecker, W.S. The role of seasonality in abrupt climate change. Quaternary Science Reviews 24, (2005). 11591182.Google Scholar
Fleitmann, D., Burns, S.J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., and Matter, A. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 300, (2003). 17371739.Google Scholar
Geyh, M.A., Kudrass, H.-R., and Streif, H. Sea-level changes during the late Pleistocene and Holocene in the Strait of Malacca. Nature 278, (1979). 441443.Google Scholar
Gherardi, J.-M., Labeyrie, L., McManus, J.F., Francois, R., Skinner, L.C., and Cortijo, E. Evidence from the Northeastern Atlantic basin for variability in the rate of the meridional overturning circulation through the last deglaciation. Earth Planet. Sci. Lett. 240, (2005). 710723.Google Scholar
Griffiths, M.L., Drysdale, R.N., Gagan, M.K., Zhao, J.-X., Ayliffe, L.K., Hellstrom, J.C., Hantoro, W.S., Frisia1, S., Feng, Y.-X., Cartwright, I., Pierre, E.St., Fischer, M.J., and Suwargadi, B.W. Increasing Australian–Indonesian monsoon rainfall linked to early Holocene sea-level rise. Nat. Geosci. 2, (2009). 636639.Google Scholar
Gupta, A.K., Anderson, D.M., and Overpeck, J.T. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421, (2003). 354357.Google Scholar
Hanebuth, T., Stattegger, K., and Grootes, P.M. Rapid flooding of the Sunda Shelf: a late-glacial sea-level record. Science 288, (2000). 10331035.Google Scholar
Huang, C.-C., Chen, M.-T., Lee, M.-Y., Wei, K.-Y., and Huang, C.-Y. Planktic foraminifer faunal sea surface temperature records of the past two glacial terminations in the South China Sea near Wan-An shallow (IMAGES core MD97-2151). Western Pacific Earth Sciences 2, 1 (2002). 114.Google Scholar
Huang, C.-Y., Wu, S.-F., Zhao, M., Chen, M.-T., Wang, C.-H., Tu, X., and Yuan, P.B. Surface ocean and monsoon climate variability in the South China Sea since the last glaciation. Marine Micropaleontology 32, (1997). 7194.Google Scholar
Johnsen, S.J., Clausen, H.B., Dansgaard, W., Fuhrer, K., Gundestrup, N., Hammer, C.U., Iversen, P., Jouzel, J., Stauffer, B., and Steffensen, J.P. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, (1992). 311313.Google Scholar
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society 77, (1996). 437471.Google Scholar
Kaplan, M.R., and Wolfe, A.P. Spatial and temporal variability of Holocene temperature in the North Atlantic region. Quaternary Research 65, (2006). 223231.Google Scholar
Kienast, M., Steinke, S., Stattegger, K., and Calvert, S.E. Synchronous tropical South China Sea SST change and Greenland warming during deglaciation. Science 291, (2001). 21322134.Google Scholar
Kutzbach, J.E., Guetter, P.J., Behling, P.J., and Selin, R. Simulated climatic changes: results of the COHMAP climate-model experiments. Wright, H.E. Jr., Kutzbach, J.E., Webb, T. III, Ruddiman, W.F., Street-Perrott, F.A., and Bartlein, P.J. Global Climates Since the Last Glacial Maximum. (1993). University of Minnesota Press, 2493.Google Scholar
Leduc, G., Schneider, R., Kim, J.-H., and Lohmann, G. Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry. Quaternary Science Reviews 29, (2010). 9891004.Google Scholar
Lee, M.-Y., Wei, K.-Y., and Chen, Y.-G. High resolution oxygen isotope stratigraphy for the last 150,000 years in the southern South China Sea: core MD972151. Terrestrial, Atmospheric and Oceanic Sciences 10, 1 (1999). 239254.Google Scholar
Lippold, J., Grützner, J., Winter, D., Lahaye, Y., Mangini, A., and Christl, M. Does sedimentary 231Pa/230Th from the Bermuda Rise monitor past Atlantic meridional overturning circulation?. Geophysical Research Letters 36, (2009). L12601 http://dx.doi.org/10.1029/2009GL038068Google Scholar
Liu, K.-K., Chao, S.-Y., Shaw, P.-T., Gong, G.-C., Chen, C.-C., and Tang, T.Y. Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep-Sea Research I 49, (2002). 13871412.Google Scholar
Liu, Q., Jiang, X., Xie, S.-P., and Liu, W.T. A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter. Journal of Geophysical Research 109, (2004). C07012 http://dx.doi.org/10.1029/2003JC002179Google Scholar
Liu, T., and Ding, Z. Chinese loess and the paleomonsoon. Annual Review of Earth and Planetary Science 26, (1998). 111145.Google Scholar
Locarnini, R.A., Mishonov, A.V., Antonov, J.I., Boyer, T.P., and Garcia, H.E. World Ocean Atlas 2005, Volume 1: Temperature. Levitus, S. NOAA Atlas NESDIS 61. (2006). U.S. Government Printing Office, Washington, D.C.. 182 Google Scholar
Lynch-Stieglitz, J., Adkins, J.F., Curry, W.B., Dokken, T., Hall, I.R., Herguera, J.C., Hirschi, J.J.-M., Ivanova, E.V., Kissel, C., Marchal, O., Marchitto, T.M., McCave, I.N., McManus, J.F., Mulitza, S., Ninnemann, U., Peeters, F., Yu, E.-F., and Zahn, R. Atlantic meridional overturning circulation during the Last Glacial Maximum. Science 316, (2007). 6669.Google Scholar
Mason, J.A., Lu, H., Zhou, Y., Miao, X., Swinehart, J.B., Liu, Z., Goble, R.J., and Yi, S. Dune mobility and aridity at the desert margin of northern China at a time of peak monsoon strength. Geology 37, 10 (2009). 947950.Google Scholar
McManus, J.F., Francois, R., Gherardi, J.-M., Keigwin, L.D., and Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, (2004). 834837.Google Scholar
Mix, A.C., Bard, E., and Schneider, R. Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quaternary Science Reviews 20, (2001). 627657.Google Scholar
North Greenland Ice Core Project members High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, (2004). 147151.Google Scholar
Pelejero, C., and Calvo, E. The upper end of the U 37 K′ temperature calibration revisited. Geochemistry, Geophysics, Geosystems 4, 2 (2003). 1014 http://dx.doi.org/10.1029/2002GC000431Google Scholar
Pelejero, C., and Grimalt, J.O. The correlation between the U 37 K′ index and sea surface temperatures in the warm boundary: the South China Sea. Geochimica et Cosmochimica Acta 61, (1997). 47894797.Google Scholar
Pelejero, C., Grimalt, J.O., Sarnthein, M., Wang, L., and Flores, J.A. Molecular biomarker record of sea surface temperature and climatic change in the South China Sea during the last 140,000 years. Marine Geology 156, (1999). 109121.Google Scholar
Pelejero, C., Kienast, M., Wang, L., and Grimalt, J.O. The flooding of Sundaland during the last deglaciation: imprints in hemipelagic sediments from the southern South China Sea. Earth and Planetary Science Letters 171, (1999). 661671.Google Scholar
Peltier, W.R., and Fairbanks, R.G. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews 25, (2006). 33223337.Google Scholar
Pflaumann, U., and Jian, Z. Modern distribution patterns of planktonic foraminifera in the South China Sea and western Pacific: a new transfer technique to estimate regional sea-surface temperatures. Marine Geology 156, (1999). 4183.Google Scholar
Porter, S.C., and An, Z. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 375, (1995). 305308.CrossRefGoogle Scholar
Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 419, (2002). 207214.Google Scholar
Rohling, E.J., Liu, Q.S., Roberts, A.P., Stanford, J.D., Rasmussen, S.O., Langen, P.L., and Siddall, M. Controls on the East Asian monsoon during the last glacial cycle, based on comparison between Hulu Cave and polar ice-core records. Quaternary Science Reviews 28, (2009). 32913302.Google Scholar
Schlitzer, R. Ocean Data View. (2008). http://odv.awi.de Google Scholar
Schulz, H., von Rad, U., and Erlenkeuser, H. Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 393, (1998). 5457.Google Scholar
Shaw, P.-T., and Chao, S.-Y. Surface circulation in the South China Sea. Deep-Sea Research I 41, 11/12 (1994). 16631683.Google Scholar
Steinke, S., Kienast, M., Groeneveld, J., Lin, L.-C., Chen, M.-T., and Rendle-Bühring, R. Proxy dependence of the temporal pattern of deglacial warming in the tropical South China Sea: toward resolving seasonality. Quaternary Science Reviews 27, (2008). 688700.Google Scholar
Steinke, S., Kienast, M., Pflaumann, U., Weinelt, M., and Stattegger, K. A high-resolution sea-surface temperature record from the tropical South China Sea (16,500–3000 yr B.P.). Quaternary Research 55, (2001). 352362.Google Scholar
Steinke, S., Mohtadi, M., Groeneveld, J., Lin, L.-C., Löwemark, L., Chen, M.-T., and Rendle-Bühring, R. Reconstructing the southern South China Sea upper water column structure since the Last Glacial Maximum: implications for the East Asian winter monsoon development. Paleoceanography 25, (2010). PA2219 http://dx.doi.org/10.1029/2009PA001850Google Scholar
Steinke, S., Yu, P.-S., Kucera, M., and Chen, M.-T. No-analog planktonic foraminiferal faunas in the glacial southern South China Sea: implications for the magnitude of glacial cooling in the western Pacific warm pool. Marine Micropaleontology 66, (2008). 7190.Google Scholar
Stevens, T., Thomas, D.S.G., Armitage, S.J., Lunn, H.R., and Lu, H. Reinterpreting climate proxy records from late Quaternary Chinese loess: a detailed OSL investigation. Earth Science Reviews 80, (2007). 111136.Google Scholar
Tian, J., Huang, E., and Pak, D.K. East Asian winter monsoon variability over the last glacial cycle: insights from a latitudinal sea-surface temperature gradient across the South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 292, (2010). 319324.Google Scholar
Tian, J., Pak, D.K., Wang, P., Lea, D., Cheng, X., and Zhao, Q. Late Pliocene monsoon linkage in the tropical South China Sea. Earth and Planetary Science Letters 252, (2006). 7281.Google Scholar
Wang, G., Chen, D., and Su, J. Generation and life cycle of the dipole in the South China Sea summer circulation. Journal of Geophysical Research 111, (2006). C06002 http://dx.doi.org/10.1029/2005JC003314Google Scholar
Wang, L., Lu, H., Liu, J., Gu, Z., Mingram, J., Chu, G., Li, J., Rioual, P., Negendank, J.F.W., Han, J., and Liu, T. Diatom-based inference of variations in the strength of Asian winter monsoon winds between 17,500 and 6000 years B.P.. Journal of Geophysical Research 113, (2008). D21101 http://dx.doi.org/10.1029/2008JD010145Google Scholar
Wang, L., Sarnthein, M., Erlenkeuser, H., Grimalt, J., Grootes, P., Heilig, S., Ivanova, E., Kienast, M., Pelejero, C., and Pflaumann, U. East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea. Marine Geology 156, (1999). 245284.Google Scholar
Wang, P. Response of Western Pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features. Marine Geology 156, (1999). 539.Google Scholar
Wang, P., Wang, L., Bian, Y., and Jian, Z. Late Quaternary paleoceanography of the South China Sea: surface circulation and carbonate cycles. Marine Geology 127, (1995). 145165.Google Scholar
Wang, Y., Cheng, H., Edwards, R.L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M.J., Dykoski, C.A., and Li, X. The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308, (2005). 854857.Google Scholar
Wang, Y., Cheng, H., Edwards, R.L., Kong, X., Shao, X., Chen, S., Wu, J., Jiang, X., Wang, X., and An, Z. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451, (2008). 10901093.Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.-C., and Dorale, J.A. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294, (2001). 23452348.Google Scholar
Wiesner, M.G., Zheng, L., Wong, H.K., Wang, Y., and Chen, W. Fluxes of particulate matter in the South China Sea. Ittekot, V., Schäfer, P., Honjo, S., and Depetris, P.J. Particle Flux in the Ocean. (1996). SCOPE, Wiley, New York. 293312.Google Scholar
Xiang, R., Chen, M., Li, Q., Liu, J., Zhang, L., and Lu, J. Planktonic foraminiferal records of East Asia monsoon changes in the southern South China Sea during the last 40,000 years. Marine Micropaleontology 73, (2009). 113.Google Scholar
Xiao, J.L., An, Z.S., Liu, T.S., Inouchi, Y., Kumai, H., Yoshikawa, S., and Kondo, Y. East Asian monsoon variation during the last 130,000 years: evidence from the Loess Plateau of central China and Lake Biwa of Japan. Quaternary Science Reviews 18, (1999). 147157.Google Scholar
Xie, H., Jia, G., Peng, P., and Shao, L. Sea surface temperature variations in the southwestern South China Sea over the past 160 ka. Acta Oceanologica Sinica 26, 2 (2007). 4955.Google Scholar
Yancheva, G., Nowaczyk, N.R., Mingram, J., Dulski, P., Schettler, G., Negendank, J.F.W., Liu, J.Q., Sigman, D.M., Peterson, L.C., and Haug, G.H. Influence of the intertropical convergence zone on the East Asian monsoon. Nature 445, (2007). 7477.Google Scholar
Yu, Y., Yang, T., Li, J., Liu, J., An, C., Liu, X., Fan, Z., Lu, Z., Li, Y., and Su, X. Millennial-scale Holocene climate variability in the NW China drylands and links to the tropical Pacific and the North Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology 233, (2006). 149162.Google Scholar
Yuan, D., Cheng, H., Edwards, R.L., Dykoski, C.A., Kelly, M.J., Zhang, M., Qing, J., Lin, Y., Wang, Y., Wu, J., Dorale, J.A., An, Z., and Cai, Y. Timing, duration, and transitions of the last interglacial Asian monsoon. Science 304, (2005). 575578.Google Scholar
Zhao, M., Huang, C.-Y., Wang, C.-C., and Wei, G. A millennial-scale U 37 K′ sea-surface temperature record from the South China Sea (8°N) over the last 150 kyr: monsoon and sea-level influence. Palaeography, Palaeoclimatology, Palaeoecology 236, (2006). 3955.Google Scholar
Zhou, H., Wang, B.-S., Guan, H., Lai, Y.-J., You, C.-F., Wang, J., and Yang, H.-J. Constraints from strontium and neodymium isotopic ratios and trace elements on the sources of the sediments in Lake Huguang Maar. Quaternary Research 72, (2009). 289300.Google Scholar