Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-17T08:00:33.264Z Has data issue: false hasContentIssue false

Palaeobotanical evidence for warm summers in the East Siberian Arctic during the last cold stage

Published online by Cambridge University Press:  20 January 2017

Frank Kienast*
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Telegrafenberg A43, 14473 Potsdam, Germany
Lutz Schirrmeister
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Telegrafenberg A43, 14473 Potsdam, Germany
Christine Siegert
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Telegrafenberg A43, 14473 Potsdam, Germany
Pavel Tarasov
Affiliation:
Free University Berlin, Institute of Geological Sciences, Palaeontological Branch, Malteserstr. 74-100, Building D, 12249 Berlin, Germany
*
Corresponding author. Fax: +49 331 288 2137.E-mail address:fkienast@awi-potsdam.de (F. Kienast).

Abstract

Plant macrofossils from the “Mamontovy Khayata” permafrost sequence (71°60′N, 129°25′E) on the Bykovsky Peninsula reflect climate and plant biodiversity in west Beringia during the last cold stage. 70 AMS and 20 conventional 14C dates suggest sediment accumulation between about 60,000 and 7500 14C yr B.P. The plant remains prove that during the last cold-stage arctic species (Minuartia arctica, Draba spp., Kobresia myosuroides) coexisted with aquatic (Potamogeton vaginatus, Callitriche hermaphroditica), littoral (Ranunculus reptans, Rumex maritimus), meadow (Hordeum brevisubulatum, Puccinellia tenuiflora) and steppe taxa (Alyssum obovatum, Silene repens, Koeleria cristata, Linum perenne). The reconstructed vegetation composition is similar to modern vegetation mosaics in central and northeast Yakutian relict steppe areas. Thus, productive meadow and steppe communities played an important role in the Siberian Arctic vegetation during the late Pleistocene and could have served as food resource for large populations of herbivores. The floristic composition reflects an extremely continental, arid climate with winters colder and summers distinctly warmer than at present. Holocene macrofossil assemblages indicate a successive paludification possibly connected with marine transgression, increased oceanic influence and atmospheric humidity. Although some steppe taxa were still present in the early Holocene, they disappeared completely before ∼2900 14C yr B.P.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aalto, M., (1970). Potamogetonaceae fruits: I. Recent and subfossil endocarps of the Fennoscandian species. Acta Botanica Fennica 88, 185.Google Scholar
Abott, R.J., Brochmann, C., (2003). History and evolution of the Arctic Flora: in the footsteps of Eric Hultén. Molecular Ecology 12, 299313.CrossRefGoogle Scholar
Adams, M., (1807). Some account of a journey to the frozen sea, and of the discovery of the remains of a mammoth. Philosophical Magazine 29, 141143.CrossRefGoogle Scholar
Anderberg, A.-L., (1994). Atlas of small fruits of Northwest-European plant species (…) with morphological descriptions: Part 4. Resedaceae-Umbelliferae. Swedish Museum of Natural History, Stockholm.Google Scholar
Anderson, P.M., Bartlein, P.J., Brubaker, L.B., (1994). Late Quaternary history of tundra vegetation in northwestern Alaska. Quaternary Research 41, 306315.CrossRefGoogle Scholar
Andreev, V.N., Galaktionova, T.F., (1981). Relict Tundra–Steppe groupings in the tundra of the lower Kolyma. Vegetation of Yakutia and its protection. Yakutian agency of the Siberian division of the Academy of Sciences of the USSR 2636.In Russian.Google Scholar
Andreev, A.A., Schirrmeister, L., Siegert, C., Bobrov, A.A., Demske, D., Seiffert, M., Hubberten, H.-W., (2002). Paleoenvironmental changes in northeastern Siberia during the Late Quaternary—evidence from pollen records of the Bykovsky Peninsula. Polarforschung 70, 1325.Google Scholar
Andreev, A.A., Tarasov, P.E., Klimanov, V.A., Melles, M., Lisitsynae, O.M., Hubberten, H.-W., (2004). Vegetation and climate changes around the Lama Lake, Taymyr Peninsula, Russia during the late Pleistocene and holocene. Quaternary International 122, 6984.CrossRefGoogle Scholar
Beijerinck, W., (1947). Zadenatlas der Nederlandsche Flora. Veenmann and Zonen, Wageningen.Google Scholar
Berggren, G., (1969). Atlas of seeds and fruits of Northwest-European plant species with morphological descriptions: Part 2. Cyperaceae. Swedish Natural Science Research Council, Stockholm.Google Scholar
Berggren, G., (1981). Atlas of seeds and fruits of Northwest-European plant species with morphological descriptions: Part 3. Salicaceae-Cruciferae. Swedish Natural Science Research Council, Stockholm.Google Scholar
Birks, H.J.B., Birks, H.H., (1980). Quaternary ecology. Edward Arnold, London.Google Scholar
Birks, H.H., Birks, H.J.B., (2000). Future of pollen analysis must include plant macrofossils. Journal of Biogeography 27, 3135.CrossRefGoogle Scholar
Bobrov, A.A., Andreev, A.A., Schirrmeister, L., Siegert, C., (2004). Testate amoebae (Protozoa: Testacea) as bioindicators in the late quaternary deposits of the Bykovsky Peninsula, Laptev Sea, Russia. Palaeogeography, Palaeoclimatology, Palaeoecology 209, 165181.CrossRefGoogle Scholar
Böcher, T.W., (1954). Oceanic and continental vegetational complexes in Southwest Greenland. Meddelelser Om Grønland 148, 1 1336.(Copenhagen).Google Scholar
Borisov, A.A., (1965). Palaeoclimates of the Territories of the USSR. Moscow-Leningrad, Nauka., In Russian.Google Scholar
Cappers, R.T.J., (1993). The identification of potamogetonaceae fruits found in the Netherlands. Acta Botanica Neerlandica 42, 4 447460.CrossRefGoogle Scholar
>CAVM Team (2003). Circumpolar Arctic vegetation map.Scale 1:7,500,000. Conservation of Arctic Flora and Fauna (CAFF) Map No. 1. U. S. Fish and Wildlife Service, Anchorage, Alaska.CAVM+Team+(2003).+Circumpolar+Arctic+vegetation+map.Scale+1:7,500,000.+Conservation+of+Arctic+Flora+and+Fauna+(CAFF)+Map+No.+1.+U.+S.+Fish+and+Wildlife+Service,+Anchorage,+Alaska.>Google Scholar
Clark, P.U., Mix, A.C., (2002). Ice sheets and sea level of the last glacial maximum. Quaternary Science Reviews 21, 17.CrossRefGoogle Scholar
Clark, P.U., Clague, J.J., Curry, B.B., Dreimanis, A., Hicock, S.R., Miller, G.H., Berger, G.W., Eyles, N., Lamothe, M., Miller, B.B., Mott, R.J., Oldale, R.N., Stea, R.R., Szabo, J., Thorleifson, L.H., Vincent, J.-S., (1993). Initiation and development of the Laurentide and Cordilleran ice sheets following the last interglaciation. Quaternary Science Reviews 12, 2 79114.CrossRefGoogle Scholar
Clark, P.U., Alley, R.B., Pollard, D., (1999). Northern hemisphere ice-sheet influences on global climate change. Science 286, 11041111.CrossRefGoogle Scholar
Cwynar, L.C., Ritchie, J.C., (1980). Arctic steppe-tundra: a Yukon perspective. Science 208, 13751377.CrossRefGoogle ScholarPubMed
Dierßen, K., (1996). Vegetation of North Europe. Eugen Ulmer, Stuttgart., In German.Google Scholar
Drachev, S.S, Savostin, L.A., Groshev, V.G., Bruni, I.E., (1998). Structure and geology of the Laptev Sea, eastern Russian arctic. Tectonophysics 298, 357393.CrossRefGoogle Scholar
Egorova, T.V., (1999). The Sedges (Carex L.) of Russia and Adjacent States (within the Limits of the former USSR). Missouri Botanical Garden Press, St. Louis., In Russian.Google Scholar
Elias, S.A., Short, S.K., Birks, H.H., (1997). Late Wisconsin environments of the Bering land bridge. Palaeogeography, Palaeoclimatology, Palaeoecology 136, 293308.CrossRefGoogle Scholar
>FAO-UNESCO (1988). Soil map of the world, revised legend.Food and Agriculture Organization of the United Nations,Rom., .FAO-UNESCO+(1988).+Soil+map+of+the+world,+revised+legend.Food+and+Agriculture+Organization+of+the+United+Nations,Rom.,+.>Google Scholar
Frenzel, B., Pécsi, M., Velichko, A.A., (1992). Atlas of palaeoclimates and palaeoenvironments of the Northern Hemisphere. Late Pleistocene–Holocene. Gustav Fischer, Stuttgart.Google Scholar
Glück, H., Pascher, A., (1936). The fresh water Flora of Central Europe vol. 15, Gustav Fischer, Jena., In German.Google Scholar
Goetcheus, V.G., Birks, H.H., (2001). Full-glacial upland tundra vegetation preserved under tephra in the Beringia National Park, Seward Peninsula, Alaska. Quaternary Science Reviews 20, 135147.CrossRefGoogle Scholar
Grigoriev, M.N., (1993). Cryomorphogenesis of the Lena River Mouth Area. SO AN SSSR, Yakutsk., In Russian.Google Scholar
Guthrie, R.D., (1990). Frozen fauna of the Mammoth Steppe. University of Chicago Press, Chicago.CrossRefGoogle Scholar
Guthrie, R.D., (2001). Origin of the mammoth steppe: a story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. Quaternary Science Reviews 20, 549574.CrossRefGoogle Scholar
Hilbig, W., (1995). The vegetation of Mongolia. SPB Academic Publishing, Amsterdam.Google Scholar
Hulten, E., (1937). Outline of the history of arctic and boreal biota during the quaternary period. Bokförlags Aktiebolaget Thule, Stockholm.Google Scholar
M.S., Ivanov, E.G., Katasonova, (1978). Pecularities of cryolithogenic deposits of the Muostakh Island.In: N.P., Anisimov, E.G., Katasonova(Eds.);Geocryologic and hydrogeologic research in Yakutia,Permafrost Institute, , SO AN SSSR, Yakutsk., 1225. In Russian.Google Scholar
Iversen, J., (1954). The late-glacial Flora of Denmark and its relation to climate and soil. Danmarks Geologiske Undersøgelse: II. Række 80, 88118.Google Scholar
Iversen, J., (1973). The development of Denmark's nature since the Last Glacial. Danmarks Geologiske Undersøgelse V, Copenhagen.Google Scholar
Jessen, K., (1955). Key to subfossil potamogeton. Botanisk Tidsskrift 52, 17.Google Scholar
Kageyama, M., Peyron, O., Pinot, S., Tarasov, P., Guiot, J., Joussaume, S., Ramstein, G., (2001). The last glacial maximum climate over Europe and western Siberia: a PMIP comparison between models and data. Climate Dynamics 17, 2343.CrossRefGoogle Scholar
J.O., Kaplan, (2001). Geophysical Applications of Vegetation Modelling.PhD Thesis,Lund University, , Lund., .Google Scholar
Katz, N.Ya., Katz, S.V., Kipiani, M.G., (1965). Atlas and keys of fruits and seeds occurring in the quaternary deposits of the USSR. Nauka, Moscow., In Russian.Google Scholar
Kienast, F., Tsherkasova, J., (2001). Comparative botanical recent-studies in the Lena-River Delta. Reports on Polar and Marine Research 388, 2444.Google Scholar
Kienast, F., Siegert, C., Dereviagin, A., Mai, D.-H., (2001). Climatic implications of late quaternary plant macrofossil assemblages from the Taymyr Peninsula, Siberia. Global and Planetary Change 31, 265281.CrossRefGoogle Scholar
Körber-Grohne, E., (1964). Bestimmungsschlüssel für subfossile Juncus-Samen und Gramineen-Früchte. August Lax, Hildesheim.Google Scholar
Kozhevnikov, Yu., Ukraintseva, V.V., (1997). Arguments for and against a Pleistocene tundra-steppe. Polar Geography 21, 5169.CrossRefGoogle Scholar
Krasnoborov, I.M., (1988). Flora Sibiri, Lycopodiaceae–Hydrocharitaceae. Nauka, Novosibirsk.Google Scholar
Kremenetski, C.V., Sulerzhitsky, L.D., Hantemirov, R., (1998). Holocene history of the northern range limits of some trees and shrubs in Russia. Arctic and Alpine Research 30, 4 317333.CrossRefGoogle Scholar
Kutzbach, J.E., Guetter, P.J., Behling, P., Selin, R., (1993). Simulated climatic changes: results of the COHMAP climate-model experiments. Wright, H.E. Jr., Global climates since the last glacial maximum University of Minnesota Press, Minneapolis., 2493.Google Scholar
Kuzmina, S., (2001). Quaternary insects of coastal lowlands in Yakutia.Dissertation.Institute of Paleontology, .RAS, Moscow. In Russian., .Google Scholar
Kuznetsova, T.V., Sulerzhitsky, L.D., Andreev, A.A., Siegert, C., Schirrmeister, L., Hubberten, H.-W., (2003). Influence of late quaternary paleoenvironmental conditions on the distribution of mammals in the Laptev Sea region. Occasional Papers in Earth Sciences 5, 5860.Google Scholar
Lambeck, K., Chappell, J., (2001). Sea level change through the last glacial cycle. Science 292, 679686.CrossRefGoogle ScholarPubMed
MacDonald, G.M., Velichko, A.A., Kremenitski, C.V., Borisova, O.K., Goleva, A.A., Andreev, A.A., Cwynar, L.C., Riding, R.T., Forman, S.L., Edwards, T.W.D., Aravena, R., Hammarlund, D., Szeicz, J.M., Gattaulin, V.N., (2000). Holocene treeline history and climate change across northern Eurasia. Quaternary Research 53, 302311.CrossRefGoogle Scholar
Marincovich, L., Gladenkov, A.Y., (1999). Evidence for an early opening of the Bering Strait. Nature 397, 149151.CrossRefGoogle Scholar
Meusel, H., Jäger, E., Rauschert, S., Weinert, E., (1978). Comparative chronology of the Central European Flora vol. II, Gustav Fischer, Jena., In German.Google Scholar
Meyer, H., Dereviagin, A., Siegert, C., Hubberten, H.-W., (2002). Palaeoclimate studies on Bykovsky Peninsula, North Siberia-hydrogen and oxygen isotopes in ground ice. Polarforschung 70, 3751.Google Scholar
Mirkin, B.M., Gogoleva, P.A., Kononov, K.E., (1985). The vegetation of central Yakutian Alases. Folia Geobotanica et Phytotaxonomica 20, 345395.CrossRefGoogle Scholar
Nehring, A., (1890). Über Tundren und Steppen der Jetzt- und Vorzeit unter besonderer Berücksichtigung ihrer Fauna. About Tundras and Steppes in former and present times with special consideration of their FaunaF. Dummer, Berlin., In German.Google Scholar
Nimis, P.L., Malyshev, L.I., Bolognini, G., Friesen, N., (1998). A multivariate phytogeographic analysis of plant diversity in the Putorana Plateau (N. Siberia). Opera Botanica 163, 172.Google Scholar
L.A., Orlova, Ya.V, Kuzmin, V.S., Volkova, I.D., Zolnikov, (2000). Mammoth (Mammuthus primigenius Blum.)and the early human in Siberia: coupled analysis of distribution areas based on radiocarbon data). In: E.A., Vaganov, A.P., Derevyanko, V.S., Zykin, S.V., Markin(Eds.), Problems of the reconstruction of climate and nature in Siberia during the middle Holocene and Pleistocene.Institute of Archaeology and Ethnography Press, , SO RAN, Novosibirsk., .383412. In Russian.Google Scholar
Owen-Smith, R.N., (1988). Megaherbivores: the influence of very large body size on ecology. Cambridge University Press Cambridge.CrossRefGoogle Scholar
Pitulko, V.V., Nikolsky, P.A., Girya, E.Yu., Basilyan, A.E., Tumskoy, V.E., Koulakov, S.A., Astakhov, S.N., Pavlova, E.Yu., Anisimov, M.A., (2004). The Yana RHS site: humans in the arctic before the last glacial maximum. Science 303, 5256.CrossRefGoogle ScholarPubMed
Ritchie, J.C., (1984). Past and present vegetation of the Far Northwest of Canada. University of Toronto Press, Toronto.CrossRefGoogle Scholar
Schirrmeister, L., Siegert, C., Kuznetsova, T., Kuzmina, S., Andreev, A.A., Kienast, F., Meyer, H., Bobrov, A.A., (2002a). Paleoenvironmental and paleoclimatic records from permafrost deposits in the arctic region of Northern Siberia. Quaternary International 89, 97118.CrossRefGoogle Scholar
Schirrmeister, L., Siegert, Ch., Kunitzky, V.V., Grootes, P., Erlenkeuser, H., (2002b). Late quaternary ice rich permafrost sequences as a palaeoenvironmental archive for the Laptev sea region in northern Siberia. International Journal of Earth Sciences 91, 154167.CrossRefGoogle Scholar
Sher, A., Parmuzin, I., Bortsov, A., (2000). Ice complex on the Bykovsky Peninsula. Rachold, V., Expeditions in Siberia in 1999 Reports on polar research vol. 354, 169182.Google Scholar
Sher, A.V., Kuzmina, S.A., Kuznetsova, T.V., Sulerzhitsky, L.D., Schirrmeister, L., Siegert, C., Andrrev, A.A., Grootes, P.M., Kienast, F., Hubberten, H.W., (2001). The last glacial environment in the unglaciated arctic shelf land. EUG XI-Journal of Conference Abstracts 6, 1 207.Google Scholar
Siegert, Ch., Schirrmeister, L., Babiy, O., (2002). The sedimentological, mineralogical, and geochemical composition of late Pleistocene deposits from the Ice Complex on the Bykovsky peninsula, Northern Siberia. Polarforschung 70, 311.Google Scholar
Sulerzhitsky, L.D., Romanenko, F.A., (1997). Age and distribution of the “mammoth” fauna of the polar region of Asia (radiocarbon dating results). Cryosphera Zemli 1, 2 1219.(In Russian).Google Scholar
Svendsen, J.I., Astakhov, V.I., Bolshiyanov, D.Yu., Demidov, I., Dowdeswell, J.A., Gataullin, V., Hjort, C., Hubberten, H.W., Larsen, E., Mangerud, J., Melles, M., Möller, P., Saarnist, M., Siegert, M.J., (1999). Maximum extent of the Eurasian ice sheets in the Barents and Kara Sea region during the Weichselian. Boreas 28, 234242.CrossRefGoogle Scholar
Svendsen, J.I., Alexanderson, H., Astakhov, V.I., Demidov, I., Dowdeswell, J.A., Funder, S., Gataullin, V., Henriksen, M., Hjort, C., Houmark-Nielsen, M., Hubberten, H.-W., Ingólfsson, Ó., Jakobsson, M., Kjær, K.H., Larsen, E., Lokrantz, H., Lunkka, J.P., Lyså, A., Mangerud, J., Matiouchkov, A., Murray, A., Möller, P., Niessen, F., Nikolskaya, O., Polyak, L., Saarnisto, M., Siegert, C., Siegert, M.J., Spielhagen, R.F., Stein, R., (2004). Late quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews 23, 12291271.CrossRefGoogle Scholar
A.Ya., Tugarinov, (1929). Origin of the Arctic Fauna.Priroda.7–8, . 653680. (In Russian).Google Scholar
Vartanyan, S.L., Garutt, V.E., Sher, A.V., (1993). Holocene dwarf mammoths from Wrangel island in the Siberian Arctic. Nature 362, 337340.CrossRefGoogle ScholarPubMed
Velichko, A.A., (1984). Late Pleistocene spatial palaeclimatic reconstructions. Velichko, A.A., Late Quaternary Environments of the Soviet Union University of Minnesota Press, Minneapolis., 261285.Google Scholar
Walker, M.D., Walker, D.A., Everett, K.R., Short, S.K., (1991). Steppe vegetation on south-facing Slopes of Pingos, central arctic coastal plain. Arctic and Alpine Research 23, 2 170188.CrossRefGoogle Scholar
Walker, D.A., Bockheim, J.G., Chapin III, F.S., Eugster, W., Nelson, F.E., Ping, C.L., (2001). Calcium-rich tundra, wildlife, and the “Mammoth Steppe”. Quaternary Science Reviews 20, 149163.CrossRefGoogle Scholar
Weber, H.E., Moravec, J., Theurillat, J.-P., (2000). International code of phytosociological nomenclature. Third edition. Journal of Vegetation Sciences 11, 739768.CrossRefGoogle Scholar
Wetterich, S., Schirrmeister, L., Pietrzeniuk, E.submitted for publication, Freshwater ostracodes in Quaternary permafrost deposits from the Siberian Arctic.Journal of Paleolimnology.Google Scholar
Willerslev, E., Hansen, A.J., Binladen, J., Brand, T.B., Gilbert, M.T.P., Shapiro, B., Bunce, M., Wiuf, C., Gilichinsky, D.A., Cooper, A., (2003). Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300, 791795.CrossRefGoogle ScholarPubMed
Yelovskaya, L.G., Konorovsky, A.K., Savinov, D.D., (1966). Salt-Rich Soils above Permafrost (Kryosols) in Central Yakutia. Nauka, Moscow., In Russian.Google Scholar
Yurtsev, B.A., (1982). Relics of the xerophyte vegetation of Beringia in Northeastern Asia. Hopkins, D.M., Matthews, J.V. Jr., Schweger, C.E., Young, S.B., Paleoecology of Beringia Academic Press, New York., 157177.CrossRefGoogle Scholar
Yurtsev, B.A., (2001). The Pleistocene “Tundra-Steppe” and the productivity paradox: the landscape approach. Quaternary Science Reviews 20, 165174.CrossRefGoogle Scholar
Zazula, G.D., Frese, D.G., Schweger, C.E., Mathewes, R.W., Beaudoin, A.B., Telka, A.M., Harington, C.R., Westgate, J.A., (2003). Ice-age steppe vegetation in east Beringia. Nature 423, 603.CrossRefGoogle ScholarPubMed