Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T23:53:03.543Z Has data issue: false hasContentIssue false

Reconstruction of Holocene lake level from diatoms, chrysophytes and organic matter in a drainage lake from the Experimental Lakes Area (northwestern Ontario, Canada)

Published online by Cambridge University Press:  20 January 2017

Abstract

A paleolimnological study of lake-level changes in Lake 239 (Rawson Lake), a headwater lake in the Experimental Lakes Area in northwestern Ontario, indicates large fluctuations have occurred over the Holocene. Analyses are based on diatoms, the proportion of chrysophyte scales to diatoms and organic matter content from near-shore sediment cores. Quantitative estimates of lake level are based on a diatom-inferred depth model that was developed from surficial sediments collected along several transects in Lake 239. Declines of ∼ 1–3 m occurred during the late Holocene, whereas declines of at least 8 m occurred during the more arid mid-Holocene. These results provide the first substantive evidence of large declines in lake level in northwestern Ontario during the mid-Holocene. Conditions during the mid-Holocene may provide a partial view of future conditions under increasing global temperatures.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bajc, A.F., Schwert, D.P., Warner, B.G., Williams, N.E., (2000). A reconstruction of Moorhead and Emerson Phase environments along the eastern margin of glacial Lake Agassiz, Rainy River basin, northwestern Ontario. Canadian Journal of Earth Sciences 37, 13351353.Google Scholar
Baker, R.G., Maher, L.J., Chumbley, C.A., Van Zant, K.L., (1992). Patterns of Holocene environmental change in the midwestern United States. Quaternary Research 37, 379389.Google Scholar
Björck, S., (1985). Deglaciation chronology and revegetation in northwestern Ontario. Canadian Journal of Earth Sciences 22, 850871.Google Scholar
Booth, R.K., Jackson, S.T., (2003). A high-resolution record of late-Holocene moisture variability from a Michigan raised bog, USA. The Holocene 13, 863876.Google Scholar
Booth, R.K., Jackson, S.T., Thompson, T.A., (2002). Paleoecology of a northern Michigan lake and the relationships among climate, vegetation and Great Lakes water levels. Quaternary Research 57, 120130.Google Scholar
Brugam, R.B., Mckeever, K., Kolesa, L., (1998). A diatom-inferred water depth reconstruction for an Upper Peninsula, Michigan lake. Journal of Paleolimnology 20, 267276.CrossRefGoogle Scholar
Camburn, K.R., Charles, D.F., (2000). Diatoms of low-alkalinity lakes in the northeastern United States. Academy of Natural Sciences, Philadelphia., .Google Scholar
Case, R.A., MacDonald, G.M., (2003). Tree-ring reconstructions of streamflow for three Canadian prairie rivers. Journal of the American Water Resources Association 39, 703716.CrossRefGoogle Scholar
Cohen, D., Person, M., Daannen, R., Locke, S., Dahlastrom, D., Zabielski, V., Winter, T.C., Rosenberry, D.O., Wright, H.E. Jr., Ito, E., Nieber, J.L., Gutowski, W.J. Jr., (2006). Groundwater-supported evapotranspiration within glaciated watersheds under condition of climate change. Journal of Hydrology 320, 484500.CrossRefGoogle Scholar
Cook, E.R., Seager, R., Cane, M.A., Stahle, D.W., (2007). North American drought: Reconstructions, causes, and consequences. Earth-Science Reviews 81, 93134.Google Scholar
Cumming, B.F., Wilson, S.E., Hall, R.I., Smol, J.P., (1995). Diatoms from British Columbia (Canada) lakes and their relationship to salinity, nutrients, and other limnological variables. Bibliotheca Diatomologica Band vol. 31, Gebrüder Bornträger, Berlin., .Google Scholar
Dean, W.E., (1974). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods. Journal of Sedimentary Petrology 44, 242248.Google Scholar
Dean, W.E., Ahlbrandt, T.S., Anderson, R.Y., Bradbury, J.P., (1996). Regional aridity in North America during the middle Holocene. The Holocene 6, 145155.CrossRefGoogle Scholar
Dearing, J.A., (1997). Sedimentary indicators of lake-level changes in the humid temperate zone: A critical review. Journal of Paleolimnology 18, 114.CrossRefGoogle Scholar
Digerfeldt, G., (1986). Studies on past lake-level fluctuations. Berglund, B.E., Handbook of Holocene palaeoecology and palaeohydrology. John Wiley, Chichester., 127143.Google Scholar
Digerfeldt, G., Almendinger, J.E., Björck, S., (1992). Reconstruction of past lake levels and their relation to groundwater hydrology in the Parkers Prairies sandplain, west-central Minnesota. Palaeogeography, Palaeoclimatology, Palaeoecology 94, 99118.CrossRefGoogle Scholar
Dyke, A.S., (2005). Late Quaternary vegetation history of northern North America based on pollen, macrofossil, and faunal remains. Géographie Physique et Quaternaire 59, 211262.Google Scholar
Findlay, D.L., Kasian, S.E.M., Stainton, M.P., Beaty, K., Lyng, M., (2001). Climatic influences on algal populations of boreal forest lakes in the Experimental Lakes Area. Limnology and Oceanography 46, 17841793.CrossRefGoogle Scholar
Fritz, S.C., (1996). Paleolimnological records of climatic change in North America. Limnology and Oceanography 41, 882889.CrossRefGoogle Scholar
Fritz, S.C., Cumming, B.F., Gasse, F., Laird, K.R., (1999). Diatoms as indicators of hydrologic and climatic change in saline lakes. Stoermer, E.F., Smol, J.P., The diatoms: Application for the environmental and earth sciences. University Press, Cambridge., 4172.Google Scholar
Glew, J.R., (1989). A new trigger mechanism for sediment samplers. Journal of Paleolimnology 2, 241243.CrossRefGoogle Scholar
Glew, J.R., Smol, J.P., Last, W.M., (2001). Sediment core collection and extrusion. Last, W.M., Smol, J.P., Tracking environmental change using lake sediments: Volume 1. Basin analysis, coring, and chronological techniques. Kluwer Academic Publishers, Dordrecht., 73105.Google Scholar
Grimm, E.C., (1987). CONISS, a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13, 1335.Google Scholar
Herweijer, C., Seager, R., Cook, E.R., Emile-Geay, J., (2007). North American droughts of the last millennium from a gridded network of tree-ring data. Journal of Climate 20, 13531376.CrossRefGoogle Scholar
IPCC, , (2007). Summary for policy makers. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L, Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, New York, USA., .Google Scholar
Johnson, W.E., Vallentyne, J.R., (1971). Rationale, background, and development of experimental lake studies in northwestern Ontario. Journal of the Fisheries Research Board of Canada 28, 123128.CrossRefGoogle Scholar
Juggins, S., (2003). C2 Software for ecological and palaeoecological data analysis and visualization User guide Version 1.3. University of Newcastle, Newcastle, United Kingdom., .Google Scholar
Krammer, K., Lange-Bertalot, H., (1986). Bacillariophyceae: 1. Teil: Naviculaceae. Ettl, H., Gärtner, G., Gerloff, J., Heynig, H., Mollenhauer, D., Süßwasserflora von Mitteleuropa, Band 2/1. Gustav Fischer Verlag, Stuttgart/New York., .Google Scholar
Krammer, K., Lange-Bertalot, H., (1988). Bacillariophyceae: 2. Teil: Bacillariaceae, Epithmiaceae, Surirellaceae. Ettl, H., Gärtner, G., Gerloff, J., Heynig, H., Mollenhauer, D., Süßwasserflora von Mitteleuropa, Band 2/2. Gustav Fischer Verlag, Stuttgart/New York., .Google Scholar
Krammer, K., Lange-Bertalot, H., (1991a). Bacillariophyceae: 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. Ettl, H., Gärtner, G., Gerloff, J., Heynig, H., Mollenhauer, D., Süßwasserflora von Mitteleuropa, Band 2/3. Gustav Fischer Verlag, Stuttgart//Jena., .Google Scholar
Krammer, K., Lange-Bertalot, H., (1991b). Bacillariophyceae: 4. Teil: Achnanthaceae. Ettl, H., Gärtner, G., Gerloff, J., Heynig, H., Mollenhauer, D., Süßwasserflora von Mitteleuropa, Band 2/4. Gustav Fischer Verlag, Stuttgart//Jena., .Google Scholar
Kronberg, B.I., Watt, M.J., Polischuk, S.C., (1998). Forest-climate interactions in the Quetico-Superior ecotone (northwestern Ontario and northern Minnesota). Environmental Monitoring and Assessment 50, 173187.Google Scholar
Laird, K.R., Fritz, S.C., Maasch, K.A., Cumming, B.F., (1996a). Greater drought intensity and frequency before AD 1200 in the northern Great Plains, USA. Nature 384, 552554.Google Scholar
Laird, K.R., Fritz, S.C., Grimm, E.C., Mueller, P.G., (1996b). Century-scale paleoclimatic reconstructions from Moon Lake, a closed-basin in the northern Great Plains. Limnology and Oceanography 41, 890902.CrossRefGoogle Scholar
Laird, K.R., Cumming, B.F., Wunsam, S., Rusak, J.A., Oglesby, R.J., Fritz, S.C., Leavitt, P.R., (2003). Lake sediments record large-scale shifts in moisture regimes across the northern prairies of North America during the past two millennia. Proceedings of National Academy of Sciences 100, 24832488.Google Scholar
Lewis, C.F.M., Forbes, D.L., Todd, B.J., Nielsen, E., Thorleifson, L.H., Henderson, P.J., McMartin, I., Anderson, T.W., Betcher, R.N., Buhay, W.M., Burbidge, S.M., Schröder-Adams, C.J., King, J.W., Moran, K., Gibson, C., Jarrett, C.A., Kling, H.J., Lockhart, W.L., Last, W.M., Matile, G.L.D., Risberg, J., Rodrigues, C.G., Telka, A.M., Vance, R.E., (2001). Uplift-driven expansion delayed by middle Holocene desiccation in Lake Winnipeg, Manitoba, Canada. Geology 29, 743746.2.0.CO;2>CrossRefGoogle Scholar
Liu, K.B., (1990). Holocene paleoecology of the boreal forest and Great Lakes-St. Lawrence forest in northern Ontario. Ecological Monographs 60, 179212.Google Scholar
McAndrews, J.H., (1982). Holocene environment of a fossil bison from Kenora, Ontario. Ontario Archaeology 37, 4151.Google Scholar
Moos, M.T., Laird, K.R., Cumming, B.F., (2005). Diatom assemblages and water depth in Lake 239 (Experimental Lakes Area, Ontario): Implications for paleoclimatic studies. Journal of Paleolimnology 34, 217227.CrossRefGoogle Scholar
Moser, K.A., Korhola, A., Weckström, J., Blom, T., Pienitz, R., Smol, J.P., Douglas, M.S.V., Hay, M.B., (2000). Paleohydrology inferred from diatoms in northern latitude regions. Journal of Paleolimnology 24, 93107.CrossRefGoogle Scholar
Nguetsop, V.F., Servant-Vildary, S., Servant, M., (2004). Late Holocene climatic changes in west Africa, a high resolution diatom record from equatorial Cameroon. Quaternary Science Reviews 23, 591609.Google Scholar
Oldfield, F., Appleby, P.G., (1985). Empirical testing of 210Pb-dating models for lake sediments. Haworth, E.Y., Lund, J.W.G., Lake sediments and environmental history. University of Minnesota Press, Minneapolis., 93124.Google Scholar
Ritchie, J.C., (1976). The late-Quaternary vegetational history of the Western Interior of Canada. Canadian Journal of Botany 54, 17931818.CrossRefGoogle Scholar
Sauchyn, D.J., Stroich, J., Beriault, A., (2003). A paleoclimatic context for the drought of 1999–2001 in the northern Great Plains of North America. The Geographical Journal 169, 158167.Google Scholar
Schelske, C.L., Peplow, A., Brenner, M., Spencer, C.N., (1994). Low-background gamma counting: Applications for 210Pb dating of sediments. Journal of Paleolimnology 10, 115128.Google Scholar
Schindler, D.W., (1997). Widespread effects of climatic warming on freshwater ecosystems in North America. Hydrological Processes 11, 10431067.Google Scholar
Schindler, D.W., Bayley, S.E., Parker, B.R., Beaty, K.G., Cruikshank, D.R., Fee, E.J., Schindler, E.U., Stainton, M.P., (1996). The effects of climatic warming on the properties of boreal lakes and streams at the Experimental Lakes Area, northwestern Ontario. Limnology and Oceanography 41, 10041017.CrossRefGoogle Scholar
Shuman, B., (2003). Controls on loss-on-ignition variation in cores from two shallow lakes in the northeastern United States. Journal of Paleolimnology 30, 371385.CrossRefGoogle Scholar
Smith, A.J., Donovan, J.J., Ito, E., Engstrom, D.R., Panek, V.A., (2002). Climate-driven hydrologic transients in lake sediment records: Multi-proxy records of mid-Holocene drought. Quaternary Science Reviews 21, 625646.CrossRefGoogle Scholar
Smol, J.P., Cumming, B.F., (2000). Tracking long-term changes in climate using algal indicators in lake sediments. Journal of Phycology 36, 9861011.CrossRefGoogle Scholar
St. George, S., Nielsen, E., (2002). Hydroclimatic changes in southern Manitoba since A.D. 1409 inferred from tree rings. Quaternary Research 58, 103111.Google Scholar
St. George, S., (2007). Hydrological and paleo-drought variability in the Winnipeg River basin. Canada, and the Canadian Prairies. Unpublished Ph.D. dissertation, University of Arizona, , Tucson, Arizona, USA., p. 157.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, W.J., Burr, G.S., Hughen, K.A., Kromer, B., McCormak, F.G., van der Pflicht, J., Spurk, M., (1998). INTCAL98 radiocarbon age calibration 24,000 cal BP. Radiocarbon 40, 10411083.Google Scholar
Teller, J.T., Last, W.M., (1981). Late Quaternary history of Lake Manitoba, Canada. Quaternary Research 16, 97116.Google Scholar
Vance, R.E., Beaudoin, A.B., Luckman, B.H., (1995). The paleoecological record of 6 ka BP climate in the Canadian prairie provinces. Géographie Physique et Quaternaire 49, 8198.Google Scholar
Webster, K.E., Soranno, P.A., Baines, S.B., Kratz, T.K., Bowser, C.J., Dillon, P.J., Campbell, P., Fee, E.J., Hecky, R.E., (2000). Structuring features of lake districts: Landscape controls on lake chemical responses to drought. Freshwater Biology 43, 499515.CrossRefGoogle Scholar
Winkler, M.G., Swain, A.M., Kutzbach, J.E., (1986). Middle Holocene dry period in the northern Midwestern United States: Lake levels and pollen stratigraphy. Quaternary Research 25, 235250.Google Scholar
Woodhouse, C.A., (2004). A paleo perspective on hydroclimatic variability in the western United States. Aquatic Sciences 66, 346356.Google Scholar
Yang, J.R., Duthie, H.C., (1995). Regression and weighted averaging models relating surficial sedimentary diatom assemblages to water depth in Lake Ontario. Journal of Great Lakes Research 21, 8494.Google Scholar
Yang, J.R., Teller, J.T., (2005). Modeling the history of Lake of the Woods since 11,000 cal yr B.P. using GIS. Journal of Paleolimnology 33, 483498.CrossRefGoogle Scholar