Skip to main content

Regionalization of fire regimes in the Central Rocky Mountains, USA

  • Vachel A. Carter (a1), Andrea Brunelle (a1), Thomas A. Minckley (a2), Philip E. Dennison (a3) and Mitchell J. Power (a4)...

Fire is one of the most important natural disturbances in the coniferous forests of the US Rocky Mountains. The Rocky Mountains are separated by a climatic boundary between 40° and 45° N, which we refer to as the central Rocky Mountains (CRM). To determine whether the fire regime from the CRM was more similar to the northern Rocky Mountains (NRM) or southern Rocky Mountains (SRM) during the Holocene, a 12,539-yr-old sediment core from Long Lake, Wyoming, located in the CRM was analyzed for charcoal and pollen. These data were then compared to charcoal records from the CRM, NRM and SRM. During the Younger Dryas chronozone, the fire regime was characterized as frequent at Long Lake. The early and middle Holocene fire regime was characterized as infrequent. A brief interval from 4000 to 3000 cal yr BP, termed the Populus period, had a frequent fire regime and remained frequent through the late Holocene at Long Lake. In comparison to sites from the NRM and SRM, the fire regime at Long Lake was most similar to the SRM during the past 12,539 cal yr BP. These results suggest the disturbance regime in the CRM has a greater affinity with those of the SRM.

Corresponding author
*Corresponding author. E-mail address: (V.A. Carter).
Hide All
Anderson, R.S., Allen, C.D., Toney, J.L., Jass, R.B., Bair, A.N., (2008). Holocene vegetation and fire regimes in subalpine and mixed conifer forests, southern Rocky Mountains, USA. International Journal of Wildland Fire 17, 96114.
Atwood jr., W.W., (1937). Records of Pleistocene glaciers in the Medicine Bow and Park Ranges. Journal of Geology 45, 2 113140.
Baker, W., (2009). Fire Ecology in Rocky Mountain Landscapes. Island Press, Washington.
Bartlein, P.J., Anderson, K.H., Anderson, P.M., Edwards, M.E., Mock, C.J., Thompson, R.S., Webb III, R.S., Whitlock, C., (1998). Paleoclimatic simulations for North America over the past 21,000 years: features of the simulated climate and comparisons with paleoenvironmental data. Quaternary Science Reviews 17, 549585.
Blaauw, M., (2010). Methods and code for ‘classical’ age-modeling of radiocarbon sequences. Quaternary Geochronology 5, 512518.
Briles, C.E., Whitlock, C., Meltzer, D.J., (2012). Last glacial–interglacial environments in the southern Rocky Mountains, USA and implications for Younger Dryas-age human occupation. Quaternary Research 77, 96103.
Brunelle, A., Minckley, T.A., Lips, E., Burnett, P., (2013). A record of late glacial–Holocene environmental change from a high elevation site in the Intermountain West. Journal of Quaternary Science 28, 103112.
Brunelle, A., Whitlock, C., Bartlein, P.J., Kipfmueller, K., (2005). Holocene fire and vegetation along environmental gradients in the Northern Rocky Mountains. Quaternary Science Reviews 24, 22812300.
Burns, , Russell, M., Honkala, , Barbara tech., H., coords., . (1990). Silvics of North: 1. Conifers; 2. Hardwoods. Agriculture Handbook 654. U.S. Department of Agriculture, Forest Service, Washington, DC. vol. 2, , pp. 877.
Carter, V.A., (2010). A paleoecological fire and vegetation history in Southeastern Wyoming. (MS Thesis)University of Utah, Salt Lake City, Utah, USA.
Clark, J.S., (1988). Particle motion and the theory of stratigraphic charcoal analysis: source area, transportation, deposition, and sampling. Quaternary Research 30, 8191.
Conroy, J.L., Overpeck, J.T., Cole, J.E., Shanahan, T.M., Steinitz-Kannan, M., (2008). Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quaternary Science Reviews 27, 11661180.
Dale, V.H., Joyce, L.A., McNulty, S., Neilson, R.P., Ayres, M.P., Flannigan, M.D., Hanson, P.J., Irland, L.C., Lugo, A.E., Peterson, C.J., Simberloff, D., Swanson, F.J., Stocks, B.J., Wotton, M., (2001). Climate change and forest disturbances. BioScience 50, 723734.
Dettinger, M.D., Cayan, D., Diaz, H., Meko, D., (1998). North°South precipitation in western North America on interannual-to-decadal timescales. Journal of Climate 11, 30953111.
Faegri, K., Kaland, P.E., Kzywinski, K., (1989). Textbook of Pollen Analysis. Wiley, New York.323.
Gardner, J.J., Whitlock, C., (2001). Charcoal accumulation following a recent fire in the Cascade Range, northwestern USA and its relevance for fire-history studies. The Holocene 11, 541549.
Grimm, Eric. (1987). CONISS: A fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13, 1 1335.
Higuera, P.E., Brubaker, L.B., Anderson, P.M., Hu, F.S., Brown, T.A., (2009). Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecological Monographs 7, 2 201219.
Huerta, M., Whitlock, C., Yale, J., (2009). Holocene vegetation–fire–climate linkages in northern Yellowstone National Park, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 271, 170181.
Jimenez-Moreno, G., Anderson, S., Atudorei, V., Toney, J., (2011). A high-resolution record of climate, vegetation and fire in the mixed conifer forest of northern Colorado (USA). Geological Society of America 123, 240254.
Johnson, B.G., Gonzalo, J.-M., Eppes, M.C., Diemer, J.A., Stone, J.R., (2013). A multiproxy record of postglacial climate variability from a shallowing 12-m deep sub-alpine bog in the southeastern San Juan Mountains of Colorado, USA. The Holocene 23, 7 10281038.
Kulakowski, D., Veblen, T.T., Drinkwater, S., (2004). The persistence of quaking aspen (Populus tremuloides) in the Grand Mesa Area, Colorado. Ecological Applications 14, 5 16031614.
Kutzbach, J., Gallimore, R., Harrison, S., Behling, P., Selin, R., Laarif, F., (1998). Climate and biome simulations for the past 21,000 years. Quaternary Science Reviews 17, 473506.
Liu, Y., Brewer, S., Booth, R.K., Minckley, T.A., Jackson, S.T., (2012). Temporal density of pollen sampling affects age determination of the mid-Holocene hemlock (Tsuga) decline. Quaternary Science Reviews 45, 5459.
Lyle, M., Heusser, L., Ravelo, C., Yamamoto, M., Barron, J., Diffenbaugh, N.S., Herbert, T., Andreasen, D., (2012). Out of the Tropics: The Pacific, Great Basin Lakes, and Late Pleistocene Water Cycle in the Western United States. Science 337, 16291633.
Millspaugh, S.H., Whitlock, C., Bartlein, P.J., (2000). Variations in fire frequency and climate over the past 17 000 yr in central Yellowstone National Park. Geology 28, 211214.
Millspaugh, S.H., Whitlock, C., Bartlein, P.J., (2004). Postglacial fire, vegetation, and climate history of the Yellowstone-Lamar and Central Plateau provinces, Yellowstone National Park. Wallace, L. After the Fires: The Ecology of Change in Yellowstone National Park. Yale University Press, 1028.
Minckley, T.A., Shriver, R.K., (2011). Vegetation responses to large-scale fires in a Rocky Mountain forest. Fire Ecology 7, 2 6680.
Minckley, T.A., Shriver, R.K., Shuman, B., (2012). Resilience and regime change in a southern Rocky Mountain ecosystem during the past 17,000 years. Ecological Monographs 82, 4968.
Minckley, T.A., Whitlock, C., Bartlein, P.J., (2007). Vegetation, fire, and climate history of the northwestern Great Basin during the last 14,000 years. Quaternary Science Reviews 26, 21672184.
Mock, C.J., (1996). Climatic controls and spatial variations of precipitation in the western United States. Journal of Climate 9, 11111125.
Moy, C.M., Seltzer, G.O., Rodbell, D.T., Anderson, D.M., (2002). Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162165. NOAA ( ) accessed May 10, 2013; accessed May 10, 2013.
NRCS, unpublished data, (Accessed June 13, 2012).
Sangster, A.G., Dale, H.M., (1964). Pollen grain preservation of underrepresented species in fossil spectra. Canadian Journal of Botany 42, 437449.
Schoennagel, T., Veblen, T., Romme, R., Sibold, J., Cook, E., (2005). ENSO and PDO variability affect drought-induced fire occurrence in Rocky Mountain subalpine forests. Ecological Applications 15, 6 20002014.
Shinker, J.J., (2010). Visualizing spatial heterogeneity of western U.S. climate variability. Earth Interactions 14, 115.
Shuman, B., Pribyl, P., Minckley, T.A., Shinker, J.J., (2010). Rapid hydrologic shifts and prolonged droughts in Rocky Mountain headwaters during the Holocene. Geophysical Research Letters 37, L06701.
Stuvier, M., Reimer, P.J., Braziunas, T.F., (1998). High-precision radiocarbon age calibration terrestrial and marine samples. Radiocarbon 40, 3 11271151.
Swetnam, T.W., Betancourt, J.L., (1998). Mesoscale disturbance and ecological response to decadal climatic variability in the American southwest. Journal of Climate 11, 31283147.
Thompson, R.S., Anderson, K.H., Bartlein, P.J., (1999). Atlas of relations between climatic parameters and distributions of important trees and shrubs in North America. U.S. Geological Survey Professional Paper 1650 A&B. ( > accessed May 26, 2013).
US Forest Service, unpublished data, Accessed June 13, 2012.
Westerling, A.L., Gershunov, A., Brown, T.J., Cayan, D.R., Dettinger, M.D., (2003). Climate and wildfire in the western United States. Bulletin of the American Meteorological Society 84, 595604.
Whitlock, C., Bartlein, P.J., (1993). Spatial variations of Holocene climatic change in the Yellowstone region. Quaternary Research 39, 231238.
Whitlock, C., Briles, C.E., Fernandez, M.C., Gage, J., (2011). Holocene vegetation, fire and climate history of the Sawtooth Range, central Idaho, USA. Quaternary Research 75, 1 114124.
Wise, E.K., (2010). Spatiotemporal variability of the precipitation dipole transition zone in the western United States. Geophysical Research Letters 37, L07706 10.1029/2009GL042193.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Quaternary Research
  • ISSN: 0033-5894
  • EISSN: 1096-0287
  • URL: /core/journals/quaternary-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 7 *
Loading metrics...

Abstract views

Total abstract views: 58 *
Loading metrics...

* Views captured on Cambridge Core between 20th January 2017 - 16th August 2018. This data will be updated every 24 hours.