Published online by Cambridge University Press: 02 July 2019
Lead carbonates were used as cosmetic and pigment since Antiquity. The pigment, known as lead white, was generally composed of cerussite and hydrocerussite. Unlike most ancient pigments, lead white was obtained by a synthetic route involving metallic lead, vinegar and organic matter. Fermentation of organic matter produces heat and CO2 emission, leading to the formation of carbonates. As lead white is formed by trapping CO2, radiocarbon (14C) dating can thus be considered. We have developed a protocol to prepare lead white. We selected modern pigments for the experiment implementation and ancient cosmetic and paintings for dating. After characterization of the samples by XRD, thermal decomposition of cerussite at various temperatures was explored in order to select the appropriate conditions for painting samples. CO2 extraction yield, SEM and XPS were used to characterize the process. Thermal decomposition at 400°C was successfully applied to mixtures of lead white with other paint components (oil as binder, calcite as filler/extender) and to historical samples. We obtained radiocarbon measurements in agreement with the expected dates, demonstrating that thermal decomposition at 400°C is efficient for a selective decomposition of lead white and that paintings can be directly 14C-dated by dating lead white pigment.
Selected Papers from the 23rd International Radiocarbon Conference, Trondheim, Norway, 17–22 June, 2018
Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.
* Views captured on Cambridge Core between 02nd July 2019 - 16th January 2021. This data will be updated every 24 hours.