Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-18T18:02:35.748Z Has data issue: false hasContentIssue false

AMS 14C Dating of Bones from Archaeological Sites in Mexico

Published online by Cambridge University Press:  28 December 2017

C Solis*
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Ave. Universidad 3000, 04510 Mexico City, Mexico
G Pérez-Andrade
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Ave. Universidad 3000, 04510 Mexico City, Mexico
M Rodríguez-Ceja
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Ave. Universidad 3000, 04510 Mexico City, Mexico
E Solís-Meza
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Ave. Universidad 3000, 04510 Mexico City, Mexico
T Méndez
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Ave. Universidad 3000, 04510 Mexico City, Mexico
E Chávez-Lomelí
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Ave. Universidad 3000, 04510 Mexico City, Mexico
M A Martínez-Carrillo
Affiliation:
Facultad de Ciencias. Universidad Nacional Autónoma de México. Circuito de la Investigación Científica S/N, Ciudad Universitaria, 04510 Mexico City, Mexico
M A Mondragón
Affiliation:
Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Departamento de Nanotecnología, Boulevard Juriquilla 3001, 76230 Querétaro, QRO, México
*
*Corresponding author. Email: corina@fisica.unam.mx.

Abstract

Collagen associated with bone samples is frequently used for radiocarbon (14C) dating of bones recovered from archaeological sites. However, submersion and exposure to moisture favors the degradation of collagen, which leads to difficulty in reliably dating bones from tropical, humid, or previously submerged archaeological sites. In this paper, we characterized the preservation state of a series of bones, through parameters such as %C, %N, C/N ratio, and collagen recovery. We performed 14C analyses of three collagen fractions obtained through the pretreatment steps (total, ultrafiltered, and insoluble collagen) in order to link the preservation state and the reproducibility of 14C values obtained from the three fractions. Collagen ultrafiltration resulted in a decrease of C/N ratio, although collagen yield was reduced. When two or three collagen fractions were obtained, ages were reproducible and consistent with expected values, according to archaeological or hydrogeological criteria. The pretreatment steps were monitored by infrared spectroscopy in order to analyze the collagen fractions at the molecular level. The presence of collagen in the total and insoluble fractions was confirmed. Since many of the Mexican samples had poor ultrafiltered collagen yield (<3%) or nonexistent yield, our results show that if additional contextual information is carefully considered, the remnant collagen in the total and insoluble fraction can be dated, especially from sites where no other datable fraction exists.

Type
Method Development
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 8th Radiocarbon & Archaeology Symposium, Edinburgh, UK, 27 June–1 July 2016.

References

REFERENCES

Blanchon, P, Shaw, J. 1995. Reef drowning during the last deglaciation: evidence for catastrophic sea-level rise and ice-sheet collapse. Geology 23(1):48.2.3.CO;2>CrossRefGoogle Scholar
Brock, F, Wood, R, Higham, TF, Ditchfield, P, Bayliss, A, Ramsey, CB. 2012. Reliability of nitrogen content (% N) and carbon: nitrogen atomic ratios (C:N) as indicators of collagen preservation suitable for radiocarbon dating. Radiocarbon 54(3–4):879886.CrossRefGoogle Scholar
Collins, MJ, Nielsen-Marsh, CM, Hiller, J, Smith, CI, Roberts, JP, Prigodich, RV, Turner-Walker, G. 2002. The survival of organic matter in bone: a review. Archaeometry 44(3):383394.CrossRefGoogle Scholar
DeNiro, MJ. 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317(6040):806809.CrossRefGoogle Scholar
Fülöp, RH, Heinze, S, John, S, Rethemeyer, J. 2013. Ultrafiltration of bone samples is neither the problem nor the solution. Radiocarbon 55(2–3):491500.CrossRefGoogle Scholar
González, AH, Terrazas, A, Stinnesbeck, W, Benavente, ME, Avilés, J, Rojas, C, Padilla, JM, Velásquez, A, Acevez, E, Frey, E. 2013. The first human settlers on the Yucatan Peninsula: evidence from drowned caves. In: Paleoamerican Odyssey. p 399413.Google Scholar
Hajdas, I. 2008. Radiocarbon dating and its applications in Quaternary studies. Eiszeitalter und Gegenwart Quaternary Science Journal 57(2):24.Google Scholar
Hollund, HI, Ariese, F, Fernandes, R, Jans, MME, Kars, H. 2013. Testing an alternative high-throughput tool for investigating bone diagenesis: FTIR in attenuated total reflection (ATR) mode. Archaeometry 55(3):507532.CrossRefGoogle Scholar
Kim, KJ, Hong, W, Park, JH, Woo, HJ, Hodgins, G, Jull, AT, Kim, JY. 2011. Development of radiocarbon dating method for degraded bone samples from Korean archaeological sites. Radiocarbon 53(1):129135.CrossRefGoogle Scholar
Lebon, M, Reiche, I, Bahain, JJ, Chadefaux, C, Moigne, AM, Fröhlich, F, Sémah, F, Schwarcz, HP, Falguères, C. 2010. New parameters for the characterization of diagenetic alterations and heat-induced changes of fossil bone mineral using Fourier transform infrared spectrometry. Journal of Archaeological Science 37(9):22652276.CrossRefGoogle Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230(5291):241242.CrossRefGoogle ScholarPubMed
Payne, KJ, Veis, A. 1988. Fourier transform IR spectroscopy of collagen and gelatin solutions: deconvolution of the amide I band for conformational studies. Biopolymers 27(11):17491760.CrossRefGoogle ScholarPubMed
Petibois, C, Gouspillou, G, Wehbe, K, Delage, JP, Déléris, G. 2006. Analysis of type I and IV collagens by FT-IR spectroscopy and imaging for a molecular investigation of skeletal muscle connective tissue. Analytical and Bioanalytical Chemistry 386(7–8):19611966.CrossRefGoogle ScholarPubMed
Pucéat, E, Reynard, B, Lécuyer, C. 2004. Can crystallinity be used to determine the degree of chemical alteration of biogenic apatites? Chemical Geology 205(1):8397.CrossRefGoogle Scholar
Ramsey, CB, Lee, S. 2013. Recent and planned developments of the program OxCal. Radiocarbon 55(2–3):720730.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Solís, C, Chávez-Lomelí, E, Ortiz, ME, Huerta, A, Andrade, E, Barrios, E. 2014. A new AMS facility in Mexico. Nuclear Instruments and Methods in Physics Research B 331:233237.CrossRefGoogle Scholar
Yizhaq, M, Mintz, G, Cohen, I, Khalaily, I, Weiner, S, Boaretto, E. 2005. Quality controlled radiocarbon dating of bones and charcoal from the early Pre-pottery Neolithic B (PPNB) of Motza (Israel). Radiocarbon 47(2):193206.CrossRefGoogle Scholar