Skip to main content
×
×
Home

The Pursuit of Isotopic and Molecular Fire Tracers in the Polar Atmosphere and Cryosphere 1

  • L. A. Currie (a1), J. E. Dibb (a2), G. A. Klouda (a1), B. A. Benner (a1), J. M. Conny (a1), S. R. Biegalski (a1), D. B. Klinedinst (a1), D. R. Cahoon (a3) and N. C. Hsu (a4)...
Abstract

We present an overview of recent multidisciplinary, multi-institutional efforts to identify and date major sources of combustion aerosol in the current and paleoatmospheres. The work was stimulated, in part, by an atmospheric particle “sample of opportunity” collected at Summit, Greenland in August 1994, that bore the 14C imprint of biomass burning. During the summer field seasons of 1995 and 1996, we collected air filter, surface snow and snowpit samples to investigate chemical and isotopic evidence of combustion particles that had been transported from distant fires. Among the chemical tracers employed for source identification are organic acids, potassium and ammonium ions, and elemental and organic components of carbonaceous particles. Ion chromatography, performed by members of the Climate Change Research Center (University of New Hampshire), has been especially valuable in indicating periods at Summit that were likely to have been affected by the long range transport of biomass burning aerosol. Univariate and multivariate patterns of the ion concentrations in the snow and ice pinpointed surface and snowpit samples for the direct analysis of particulate (soot) carbon and carbon isotopes. The research at NIST is focusing on graphitic and polycyclic aromatic carbon, which serve as almost certain indicators of fire, and measurements of carbon isotopes, especially 14C, to distinguish fossil and biomass combustion sources.

Complementing the chemical and isotopic record, are direct “visual” (satellite imagery) records and less direct backtrajectory records, to indicate geographic source regions and transport paths. In this paper we illustrate the unique way in which the synthesis of the chemical, isotopic, satellite and trajectory data enhances our ability to develop the recent history of the formation and transport of soot deposited in the polar snow and ice.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The Pursuit of Isotopic and Molecular Fire Tracers in the Polar Atmosphere and Cryosphere 1
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The Pursuit of Isotopic and Molecular Fire Tracers in the Polar Atmosphere and Cryosphere 1
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The Pursuit of Isotopic and Molecular Fire Tracers in the Polar Atmosphere and Cryosphere 1
      Available formats
      ×
Copyright
References
Hide All
Biegalski, S. R., Currie, L. A., Fletcher, R. A., Klouda, G. A. and Weissenbök, R. 1998 AMS and microprobe analysis of combusted particles in ice and snow. Radiocarbon, this issue.
Buffle, J. and van Leeuwen, H. P., eds. 1992 IUPAC Environmental Analytical Chemistry Series, Vol. 1. Lewis Publishers, Inc.
Cachier, H. and Pertuisot, M. H. 1994 Particulate carbon in Arctic ice. Analusis 22: 3437.
Cahoon, D. R. Jr., Stocks, B. J., Levine, J. S., Cofer, W.R. III and Pierson, J. 1994 Satellite analysis of the severe 1987 forest fires in northern China and southwestern Siberia. Journal of Geophysical Research 99: 1862718638.
Clark, T. L. and Cohn, R. D. 1990 Across North America Tracer Experiment. USEPA Report 600/3–90/051.
Currie, L. A. 1992 Source apportionment of atmospheric particles. In Buffle, J. and van Leeuwen, H. P., eds., Characterization of Environmental Particles Vol. I. IUPAC Environmental Analytical Chemistry Series. Lewis Publishers, Inc.: 374.
Currie, L. A., Benner, B. A. Jr., Klouda, G. A., Conny, J. M. and Dibb, J. E. (abstract) 1996 Tracking biomass burning aerosol: From the combustion laboratory to Summit, Greenland. Workshop on Global Climate Change. Radiocarbon 38(1): 20.
Currie, L. A., Klouda, G. A., Continetti, R. E., Kaplan, I. R., Wong, W. W., Dzubay, T. G. and Stevens, R. K. 1983 On the origin of carbonaceous particles in American cities: Results of radiocarbon “dating” and chemical characterization. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 11th International 14C Conference. Radiocarbon 25(2): 603614.
Currie, L. A., Stafford, T. W., Sheffield, A. E., Klouda, G. A., Wise, S. A. and Fletcher, R. A. 1989 Microchemical and molecular dating. In Long, A., Kra, R. S. and Srdoč, D., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 448463.
Currie, L. A., Sheffield, A.E., Riederer, G. E. and Gordon, G. E. 1994 Improved atmospheric understanding through exploratory data analysis and complementary modeling: The urban K-Pb-C system. Atmospheric Environment 28: 13591369.
Dibb, J. E., Jaffrezo, J.-L. and Legrand, M. 1992 Initial findings of recent investigation of air-snow relationships in the Summit region of Greenland. Journal of Atmospheric Chemistry 14: 167180.
Dibb, J. E., Talbot, R. W., Whitlow, S. I., Shipham, M. C., Winterle, J., McConnell, J. and Bales, R. 1996 Biomass burning signatures in the atmosphere and snow at Summit, Greenland: An event on 5 August 1994. Atmospheric Environment 30: 553561.
Draxler, R. R. 1992 Hybrid single-particle Lagrangian integrated trajectories (HY-SPLIT): Version 3.0, User's guide and model description. NOAA Technical Memorandum ERL ARL-195.
Herman, J. R., Bhartia, P. K., Torres, O., Hsu, C., Seftor, C. J. and Celarier, E. 1997 Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data. Journal of Geophysical Research 102: 1691116922.
Hsu, N. C., Herman, J. R., Bhartia, P. K., Seftor, C. J., Torres, O., Thompson, A. M., Gleason, J. F., Eck, T. F. and Holben, B. N. 1996 Detection of biomass burning smoke from TOMS measurements. Geophysical Research Letters 23: 745748.
Justice, C. O., Kendall, J. D. and Kaufman, Y. J. 1995 (ms.) Global fire mapping using satellite data: An overview. Paper presented at the Chapman Conference on Biomass Burning and Global Change, Williamsburg, Virginia, March 1995.
Klinedinst, D. B., Kenniston, G. E. and Klouda, G. A. (ms.) 1997 Evaluation of the residential woodburning contribution to PM10 carbon in Denver, Colorado using radiocarbon analysis. To be submitted to Environmental Science and Technology.
Klinedinst, D. B., McNichol, A. P., Currie, L. A., Schneider, R. J., Klouda, G. A., von Reden, K. F., Verkouteren, R. M. and Jones, G. A. 1994 Comparative study of Fe-C bead and graphite target performance with the National Ocean Science AMS (NOSAMS) facility recombinator ion source. Nuclear Instruments and Methods in Physics Research B92: 166171.
Kra, R. 1986 Standardizing procedures for collecting, submitting, recording, and reporting radiocarbon samples. In Stuiver, M. and Kra, R., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 765–775.
Stocks, B. J., Cahoon, D. R., Goldammer, J. G. and Bauer, R. J. (ms.) 1995 Documenting the seasonal distribution of vegetation fires using DMSP and NOAA-AVHRR satellite imagery. Paper presented at the Chapman Conference on Biomass Burning and Global Change, Williamsburg, Virginia, March 1995.
Weissenbök, R., Biegalski, S. R., Currie, L. A., Klinedinst, D.B., Golser, R., Klouda, G. A., Kutschera, W., Priller, A. Rom, W., Steier, P. and Wild, E. 1998 14C measurements of sub-milligram carbon samples from aerosols. Radiocarbon, this issue.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Radiocarbon
  • ISSN: 0033-8222
  • EISSN: 1945-5755
  • URL: /core/journals/radiocarbon
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed