Skip to main content Accesibility Help

Hydropyrolysis: Implications for Radiocarbon Pretreatment and Characterization of Black Carbon

  • P L Ascough (a1), M I Bird (a2), W Meredith (a3), R E Wood (a4), C E Snape (a3), F Brock (a4), T F G Higham (a4), D J Large (a3) and D C Apperley (a5)...

Charcoal is the result of natural and anthropogenic burning events, when biomass is exposed to elevated temperatures under conditions of restricted oxygen. This process produces a range of materials, collectively known as pyrogenic carbon, the most inert fraction of which is known as black carbon (BC). BC degrades extremely slowly and is resistant to diagenetic alteration involving the addition of exogenous carbon, making it a useful target substance for radiocarbon dating particularly of more ancient samples, where contamination issues are critical. We present results of tests using a new method for the quantification and isolation of BC, known as hydropyrolysis (hypy). Results show controlled reductive removal of non-BC organic components in charcoal samples, including lignocellulosic and humic material. The process is reproducible and rapid, making hypy a promising new approach not only for isolation of purified BC for 14C measurement but also in quantification of different labile and resistant sample C fractions.

    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Hydropyrolysis: Implications for Radiocarbon Pretreatment and Characterization of Black Carbon
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Hydropyrolysis: Implications for Radiocarbon Pretreatment and Characterization of Black Carbon
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Hydropyrolysis: Implications for Radiocarbon Pretreatment and Characterization of Black Carbon
      Available formats
Hide All
Alloway, BV, Pribadi, A, Westgate, JA, Bird, M, Fifield, LK, Hogg, A, Smith, I. 2004. Correspondence between glass-FT and AMS 14C ages of silicic pyroclastic density current (PDC) deposits sourced from Maninjau caldera, west-central Sumatra. Earth and Planetary Science Letters 227(1–2):121–33.
Antal, MJ, Grønli, MG. 2003. The art, science, and technology of charcoal production. Industrial & Engineering Chemistry Research 42(8):1619–46.
Ascough, P, Bird, MI, Wormald, P, Snape, CE, Apperley, D. 2008a. Influence of pyrolysis variables and starting material on charcoal stable isotopic and molecular characteristics. Geochimica et Cosmochimica Acta 72(24):6090–102.
Ascough, PL, Bird, MI, Brock, F, Higham, TFG, Meredith, W, Snape, C, Vane, CH. 2008b. Hydropyrolysis as a new tool for radiocarbon pretreatment and the quantification of black carbon. Quaternary Geochronology 4(2):140–7.
Atalla, RH, VanderHart, DL. 1999. The role of solid state 13C NMR spectroscopy in studies of the structure of native celluloses. Solid State Nuclear Magnetic Resonance 15(1):119.
Baena, J, Carrión, E, Manzano, I, Velázquez, R, Sanz, E, Sánchez, S, Ruiz, B, Uzquiano, P, Yravedra, J. 2005. Ocupaciones musterienses en la comarca de Liébana (occidente de Cantabria): la cueva de El Esquilleu. In: Santonja, M, Pérez-Gonzalez, A, Machado, M, editors. Geoarqueología y patrimonio en la Península Ibérica y el entornoMediterráneo. Adema: Almazán. p 113–25.
Bartolomei, G, Broglio, A, Cassoli, P, Castelletti, L, Cremaschi, M, Giacobini, G, Malerba, G, Maspero, A, Peresani, M, Sartorelli, A, Tagliacozzo, A. 1992. La Grotte-Abri de Fumane. Un site Aurignacien au Sud des Alps. Preistoria Alpina 28:131–79.
Bird, MI. 2006. Radiocarbon dating of charcoal. In: Elias, SA, editor. The Encyclopaedia of Quaternary Science. Amsterdam: Elsevier. p 2950–7.
Bird, MI, Gröcke, DR. 1997. Determination of the abundance and carbon isotope composition of elemental carbon in sediments. Geochimica et Cosmochimica Acta 61(16):3413–23.
Bird, MI, Moyo, E, Veenendaal, E, Lloyd, JJ, Frost, P. 1999a. Stability of elemental carbon in a savanna soil. Global Biogeochemical Cycles 13(4):923–32.
Bird, MI, Ayliffe, LK, Field, LK, Turney, CSM, Cresswell, RG, Barrows, TT, David, B. 1999b. Radiocarbon dating of ‘old’ charcoal using a wet oxidation-stepped combustion procedure. Radiocarbon 41(2):127–40.
Bird, MI, Turney, CSM, Fifield, LK, Jones, R, Ayliffe, LK, Palmer, A, Cresswell, RG, Robertson, S. 2002. Radiocarbon analysis of the early archaeological site of Nauwalabila 1, Arnhem Land, Australia: implications for sample suitability and stratigraphic integrity. Quaternary Science Reviews 21(8–9):1061–75.
Bird, MI, Fifield, LK, Santos, GM, Beaumont, PB, Zhou, Y, di Tada, ML, Hausladen, PA. 2003. Radiocarbon dating from 40 to 60 ka BP at Border Cave, South Africa. Quaternary Science Reviews 22(8–9):943–7.
Brock, F, Higham, TFG. 2008. AMS radiocarbon dating of Paleolithic-aged charcoal from Europe and the Mediterranean Rim using ABOx-SC. Radiocarbon 51(2):839–46.
Brock, F, Higham, TFG, Ditchfield, P, Bronk Ramsey, C. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103–12.
Broglio, A, De Stefani, M, Tagliacozzo, A, Gurioli, F, Facciolo, A. 2006. Aurignacian dwelling structures, hunting strategies and seasonality in the Fumane Cave (Lessini Mountains). In: Vasil'ev, SA, Popov, VV, Anikovich, MV, Praslov, ND, Sinitsyn, AA, Hoffecker, JF, editors. Kostenki & the Early Upper Paleolithic of Eurasia: General Trends, Local Developments. Saint Petersburg: Nestor-Historia Publications. p 263–8.
Chappell, J, Head, MJ, Magee, J. 1996. Beyond the radiocarbon limit in Australian archaeology and Quaternary research. Antiquity 70(269):543–52.
Cohen-Ofri, I, Weiner, L, Boaretto, E, Mintz, G, Weiner, S. 2006. Modern and fossil charcoal: aspects of structure and diagenesis. Journal of Archaeological Science 33(3):428–39.
Delibrias, G, Guidon, N, Parenti, F. 1988. The Toca do Boqueirão do Sítio da Pedra Furada: stratigraphy and chronology. In: Early Man in the Southern Hemisphere. Supplement to Archaeometry: Australasian Studies. University of Adelaide, Department of Physics and Mathematics. p S3S11.
DeLuca, TH, MacKenzie, MD, Gundale, MJ, Holben, WE. 2006. Wildfire-produced charcoal directly influences nitrogen cycling in forest ecosystems. Soil Science Society of America Journal 70:448–53.
Earl, WL, VanderHart, DL. 1981. Observations by high-resolution carbon-13 nuclear magnetic resonance of cellulose I related to morphology and crystal structure. Macromolecules 14:570–4.
Eckmeier, E, Gerlach, R, Skjemstad, JO, Ehrmann, O, Schmidt, MWI. 2007. Only small changes in soil organic carbon and charcoal found one year after experimental slash-and-burn in a temperate deciduous forest. Biogeosciences Discussions 4:595614.
Fontaine, S, Barot, S, Barré, P, Bdiouil, N, Mary, B, Rumpel, C. 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450(7167):277–80.
Gillespie, R, Hammond, AP, Goh, KM, Tonkin, PJ, Lowe, DC, Sparks, RJ, Wallace, G. 1992. AMS radiocarbon dating of a Late Quaternary tephra site at Graham's Terrace, New Zealand. Radiocarbon 34(1):21–8.
Goh, KM. 1979. Contaminants in charcoals used for radiocarbon dating. New Zealand Journal of Science 22:3947.
Guidon, N, Delibrias, G. 1985. Inventaire des sites Sud-Americains Anterieurs a 12000 ans. L'Anthropologie 89(3):385408.
Guidon, N, Delibrias, G. 1986. Carbon-14 dates point to man in the Americans 32,000 years ago. Nature 321(6072):769–71.
Hallier, M, Petit, LP. 2000. Tertres d'occupation et d'autre formes d'habitation à l'âge de Fer: rapport préliminaire de la campagne archéologique en été 2000 au nord du Burkina Faso. Nyame Akuma 54:25.
Hallier, M, Petit, LP. 2001 Fouille d'une maison de l'Age du Fer dans le nord du Burkina Faso. Nyame Akuma 56:23.
Hammes, K, Schmidt, MWI, Smernik, RJ, Currie, LA, Ball, WP, Nguyen, TH, Louchouarn, P, Houel, S, Gustafsson, Ö, Elmquist, M, Cornelissen, G, Skjemstad, JO, Masiello, CA, Song, J, Peng, P, Mitra, S, Dunn, JC, Hatcher, PG, Hockaday, WC, Smith, DM, Hartkopf-Fröder, CM, Böhmer, AM, Lüer, B, Huebert, BJ, Amelung, GW, Brodowski, S, Huang, L, Zhang, W, Gschwend, PM, Flores-Cervantes, X, Largeau, C, Rouzaud, J-N, Rumpel, C, Guggenberger, G, Kaiser, K, Rodionov, A, Gonzalez-Vila, FJ, Gonzalez-Pere, JA, De La Rosa, JM, Manning, DAC, López-Capél, E, Ding, L. 2007. Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochemical Cycles 21: GB3016, doi:10.1029/2006GB002914.
Harkness, DD, Roobol, MJ, Smith, AL, Stipp, JJ, Baker, PE. 1994. Radiocarbon redating of contaminated samples from a tropical volcano: the Mansion “Series” of St. Kitts, West Indies. Bulletin of Volcanology 56:326–34.
Hatcher, PG, Lerch, I, Harry, E, Bates, AL, Verheyen, TV. 1989. Solid-state 13C nuclear magnetic resonance studies of coalified gymnosperm xylem tissue from Australian brown coals. Organic Geochemistry 14(2):145–55.
Haumaier, L, Zech, W. 1995. Black carbon—possible source of highly aromatic components of soil humic acids. Organic Geochemistry 23(3):191–6.
Hedges, REM, Law, IA, Bronk, CR, Housley, RA. 1989. The Oxford Accelerator Mass Spectrometry Facility: technical developments in routine dating. Archaeometry 31(2):99113.
Higham, TFG, McGovern-Wilson, RJ, Hogg, AG. 1998. Chemical pretreatment and radiocarbon dating of samples from the prehistoric site of Killermont #2, Mackenzie Basin, New Zealand. New Zealand Journal of Archaeology 18:7590.
Higham, TFG, Barton, H, Turney, CSM, Barker, G, Bronk Ramsey, C, Brock, F. 2009a. Radiocarbon dating of charcoal from tropical sequences: results from the Niah Great Cave, Sarawak, and their broader implications. Journal of Quaternary Science 24(2):189–97.
Higham, T, Brock, F, Peresani, M, Broglio, A, Wood, R, Douka, K. 2009b. Problems with radiocarbon dating the Middle to Upper Palaeolithic transition in Italy. Quaternary Science Reviews 28(13–14):1257–67.
Jin, Z, Katsumata, KS, Lam, TBT, Iiyama, K. 2006. Covalent linkages between cellulose and lignin in cell walls of coniferous and nonconiferous woods. Biopolymers 83(2):103–10.
Kaal, J, Brodowski, S, Baldock, JA, Nierop, KGJ, Cortizas, AM. 2008. Characterisation of aged black carbon using pyrolysis-GC/MS, thermally assisted hydrolysis and methylation (THM), direct and cross-polarisation 13C nuclear magnetic resonance (DP/CP NMR) and the benzenepolycarboxylic acid (BPCA) method. Organic Geochemistry 39(10):1415–26.
Knicker, H. 2007. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85(1):91118.
Knicker, H, Almendros, G, González-Vila, FJ, González-Pérez, JA, Polvillo, O. 2006. Characteristic alterations of quantity and quality of soil organic matter caused by forest fires in continental Mediterranean ecosystems: a solid-state 13C NMR study. European Journal of Soil Science 57:558–69.
Knicker, H, Müller, P, Hilscher, A. 2007. How useful is chemical oxidation with dichromate for the determination of “Black Carbon” in fire-affected soils? Geoderma 142:178–96.
Kramer, RW, Kujawinski, EB, Hatcher, PG. 2004. Identification of black carbon derived structures in a volcanic ash soil humic acid by fourier transform ion cyclotron resonance mass spectrometry. Environmental Science and Technology 38:3387–95.
Kringstad, KP, Mörck, R. 1983. 13C-NMR spectra of kraft lignins. Holzforschung 37:237–44.
Laird, DA, Chappell, MA, Martens, DA, Wershaw, RL, Thompson, M. 2008. Distinguishing black carbon from biogenic humic substances in soil clay fractions. Geoderma 143:115–22.
Levin, I, Kromer, B. 2004. The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46(3):1261–72.
Levine, JS, Cofer, WR III, Cahoon, DR Jr, Winsted, EL, Stocks, BJ. 1992. Biomass burning and global change. AIP Conference Proceedings 277:131–9.
Maitland, J. 2005. Organic Chemistry. New York: W.W. Norton.
McMurry, J. 1996. Organic Chemistry. 4th edition. Pacific Grove: Brooks/Cole Publishing.
Meredith, W, Russell, CA, Cooper, M, Snape, CE, Love, GD, Fabbri, D, Vane, CH. 2004. Trapping hydropyrolysates on silica and their subsequent thermal desorption to facilitate rapid fingerprinting by GC-MS. Organic Geochemistry 35(1):7389.
Parenti, F. 2001. Le gisement quaternaire de la Toca do Boqueirão da Pedra Furada (Piaui, Brésil): stratigraphie, chronologie, évolution culturelle. Paris: Editions Recherches sur Les Civilisations.
Peresani, M, Cremaschi, M, Ferraro, F, Falguéres, C, Bahain, J-J, Gruppioni, G, Sibilia, E, Quarta, G, Calcagnile, L, Dolo, J-M. 2008. Age of the final Middle Palaeolithic and Uluzzian levels at Fumane Cave, Northern Italy, using 14C, ESR, 234U/230Th and thermoluminescence methods. Journal of Archaeological Science 35(11):2986–96.
Preston, CM, Schmidt, MWI. 2006. Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeoscience 3:397420.
Rebollo, NR, Cohen-Ofri, I, Popovitz-Biro, R, Bar-Yosef, O, Meignen, L, Goldberg, P, Weiner, S, Boaretto, E. 2008. Structural characterization of charcoal exposed to high and low pH: implications for 14C sample preparation and charcoal preservation. Radiocarbon 50(2):289307.
Santos, GM, Bird, MI, Parenti, F, Fifield, LK, Guidon, N, Hausladen, PA. 2003. A revised chronology of the lowest occupation layer of Pedra Furada Rock Shelter, Piaui, Brazil: the Pleistocene peopling of the Americas. Quaternary Science Reviews 22(21–22):2303–10.
Schmidt, MWI, Skjemstad, JO, Czimczik, CI, Glaser, B, Prentice, KM, Gelinas, Y, Kuhlbusch, TAJ. 2001. Comparative analysis of black carbon in soils. Global Biogeochemical Cycles 15(1):163–7.
Simpson, MJ, Hatcher, PG. 2004. Overestimates of black carbon in soils and sediments. Naturwissenschaften 91:436–40.
Skjemstad, JO, Reicosky, DC, Wilts, AR, McGowan, JA. 2002. Charcoal carbon in U.S. agricultural soils. Soil Science Society of America Journal 66:1249–55.
Thorn, KA, Folan, DW, MacCarthy, P. 1989. Characterization of the International Humic Substances Society Standard and reference fulvic and humic acids by solution state carbon-13 (13C) and hydrogen-1 (1H) nuclear magnetic resonance spectrometry. Denver: US Geological Survey, Water-Resources Investigations Report 89–4196.
Turney, CSM, Bird, MI, Fifield, LK, Roberts, RG, Smith, MA, Dortch, CE, Grün, R, Lawson, E, Ayliffe, LK, Miller, GH, Dortch, J, Cresswell, RG. 2001. Early human occupation at Devil's Lair, southwestern Australia 50,000 years ago. Quaternary Research 55(1):313.
Venkataraman, C, Friedlander, SK. 1994. Size distributions of polycyclic aromatic hydrocarbons and elemental carbon. 2. Ambient measurements and effects of atmospheric processes. Environmental Science and Technology 28(4):563–72.
Wolbach, WS, Anders, E. 1989. Elemental carbon in sediments: determination and spectroscopic analysis in the presence of kerogen. Geochimica et Cosmochimica Acta 53(7):1637–47.
Zilhão, J. 2006. Chronostratigraphy of the Middle-to-Upper Paleolithic transition in the Iberian Peninsula. Pyrenae 37(1):784.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0033-8222
  • EISSN: 1945-5755
  • URL: /core/journals/radiocarbon
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed