Skip to main content
×
Home

Naturally Dyed Wool and Silk and Their Atomic C:N Ratio for Quality Control of 14C Sample Treatment

  • Mathieu Boudin (a1), Marco Bonafini (a1), Ina Vanden Berghe (a1) and Marie-Christine Maquoi (a1)
Abstract
Abstract

Quality control of sample material (e.g. charcoal, collagen) is receiving considerable attention in the effort to obtain more reliable 14C dates. The atomic carbon to nitrogen (C:N) ratio is a useful indicator of contamination and/or degradation of bone collagen. Wool and silk are also composed of proteinaceous material such as bone collagen, and the C:N ratio may also be a useful quality indicator for archaeological wool and silk. Analyses of modern undyed, mordanted, non-mordanted, and naturally dyed silk and wool were done in order to determine a C:N range that indicates the sample quality. The C:N range can be different for every material as the amino acid composition of wool, silk, and bone collagen are distinct. The measured minimum and maximum C:N values were used to set up a C:N range of uncontamined and undegraded wool and silk. Then, the C:N ratio and 14C were analyzed of archaeological wool and silk samples. The applicability of the C:N ratio as a quality indicator for archaeological silk and wool was shown by the good agreement of the 14C dates with the presumed historical dates for the uncontaminated samples and the disagreement of the 14C dates with the presumed historical dates for contaminated samples.

Copyright
Corresponding author
*Corresponding author. Email: mathieu.boudin@kikirpa.be.
References
Hide All
Alon D, Mintz G, Cohen I, Weiner S, Boaretto E. 2002. The use of Raman spectroscopy to monitor the removal of humic substances from charcoal: quality control for 14C dating of charcoal. Radiocarbon 44(1):111.
Ambrose SH. 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17(4):431451.
Aspland JR. 1997. Textile Dyeing and Coloration. Durham: American Association of Textile Chemists and Colorists. p 244245.
Bechtold T, Mussak R. 2009. Handbook of Natural Colorants. Chichester: Wiley & Sons.
Becker MA, Magoshi Y, Sakai T, Tuross NC. 1997. Chemical and physical properties of old silk fabrics+biochemical analysis of 17 Japanese silk kimono lining fabrics. Studies in Conservation 42(1):2737.
Boudin M, Boeckx P, Vandenabeele P, Mitschke S, Van Strydonck M. 2011. Monitoring the presence of humic substances in wool and silk by the use of nondestructive fluorescence spectroscopy: quality control for 14C dating of wool and silk. Radiocarbon 53(3):429442.
Boudin M, Boeckx P, Vandenabeele P, Van Strydonck M. 2013. Improved radiocarbon dating for contaminated archaeological bone collagen, silk, wool and hair samples via cross-flow nanofiltrated amino acids. Rapid Communications for Mass Spectrometry 27(18):20392050.
Boudin M, Boeckx P, Vandenabeele P, Van Strydonck M. 2014. An archaeological mystery revealed by radiocarbon dating of cross-flow nanofiltrated amino acids derived from bone collagen, silk, and hair: case study of the bishops Baldwin I and Radbot II from Noyon-Tournai. Radiocarbon 56(2):603617.
Boudin M, Van Strydonck M, van den Brande T, Synal H-A, Wacker L. 2015. A new AMS facility at the Royal Institute for Cultural Heritage, Brussels, Belgium. Nuclear Instruments and Methods in Physics Research B 361:120123.
Bronk Ramsey C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425430.
Bronk Ramsey C. 2001. Development of the radiocarbon calibration program. Radiocarbon 43(2A):355363.
Dedhia EM. 1998. Natural dyes. Colourage 45(3):4549.
DeNiro MJ. 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317(6040):806809.
Gillespie JM, Broad A, Reis PJ. 1969. Further study on the dietary-regulated biosynthesis of high-sulphur wool proteins. Biochemical Journal 112(1):4149.
Gulrajani ML, Gupta D. 1992. Natural Dyes and Application to Textiles. New Delhi: Department of Textile Technology, Indian Institute of Technology.
Hajdas I, Cristi C, Bonani G, Maurer M. 2014. Textiles and radiocarbon dating. Radiocarbon 56(2):637643.
Herbst W, Hunger K. 1997. Industrial organic pigments. Production, properties, applications. Journal of American Institute of Conservation 45:107125.
Hofenk de Graaff J. 2004. The Colourful Past: Origins, Chemistry and Identification of Natural Dyestuffs . London: Archetype Publications.
Holme I. 2006. Sir William Henry Perkin: a review of his life, work and legacy. Coloration Technology 122(5):235251.
IUPAC. 2006. Compendium of Chemical Terminology, 2nd edition (the “Gold Book”). Compiled by A D McNaught and A Wilkinson. Oxford: Blackwell Scientific Publications (1997). XML on-line corrected version: http://goldbook.iupac.org (2006-) created by M Nic, J Jirat, B Kosata; updates compiled by A Jenkins. ISBN 0-9678550-9-8. doi:10.1351/goldbook
Jones LN, Rivett DE, Tucker DJ. 1998. Wool and related mammalian fibres. In: Lewin M, Pearce EM, editors. Handbook of Fibre Chemistry. New York: Marcel Dekker. p 356414.
Kim K, Southon J, Imamura M, Sparks R. 2008. Development of sample pretreatment of silk for radiocarbon dating. Radiocarbon 50(1):131138.
Kuzmin Y, Keally C, Jull A, Burr G, Klyuev N. 2012. The earliest surviving textiles in East Asia from Chertovy Vorota Cave, Primorye Province, Russian Far East. Antiquity 86(332):325337.
Leeder JD, Marshall RC. 1982. Readily-extracted proteins from merino wool. Textile Research Journal 52(4):245249.
Ling HT. 2009. Natural dyes in Eastern Asia, Vietnam and neighbouring countries. In: Bechtold T, Mussak R, editors. Handbook of Natural Colorants. Chichester: Wiley & Sons. p 6572.
Maclaren JA, Milligan B. 1981. Wool Science - The Chemical Reactivity of the Wool Fibre. Marrickville: Science Press. p 116.
Mannering U, Possnert G, Heinemeier J, Gleba M. 2010. Dating Danish textiles and skins from bog finds by means of 14C AMS. Journal of Archaeological Science 37(2):261268.
Nadeau M-J, Grootes PM, Schliecher M, Hasselberg P, Rieck A, Bitterling M. 1998. Sample throughput and data quality at the Leibniz-Labor AMS facility. Radiocarbon 40(1):239245.
O’Connell TC, Hedges REM. 1999a. Investigations into the effect of diet on modern human hair isotopic values. American Journal of Physical Anthropology 108(4):409425.
O’Connell TC, Hedges REM. 1999b. Isotopic comparison of hair and bone: archaeological analyses. Journal of Archaeological Science 26(6):661665.
O’Connell TC, Hedges REM, Healey MA, Simpson AHRW. 2001. Isotopic comparison of hair, nail and bone: modern analyses. Journal of Archaeological Science 28(11):12471255.
Rageth J. 2004. Radiocarbon dating of textiles. Orientations 35(4):5762.
Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.
Schoeninger MJ, Moore KM, Murray ML, Kingston JD. 1989. Detection of bone preservation in archaeological and fossil samples. Applied Geochemistry 4:281292.
Sibley LR, Jakes KA. 1984. Survival of protein fibers in archaeological contexts. Science and Archaeology 26:1727.
Taylor RE, Hare E, Prior CA, Kirner DL, Wan L, Burky RR. 1995. Radiocarbon dating of biochemically characterized hair. Radiocarbon 37(2):319330.
Van den Berghe I, Gleba M, Mannering U. 2009. Towards the identification of dyestuffs in Early Iron Age Scandinavian peat bog textiles. Journal of Archaeological Science 36(9):19101921.
van der Plicht J, van der Sanden WAB, Aerts AT, Streurma HJ. 2004. Dating bog bodies by means of 14C-AMS. Journal of Archaeological Science 31:471491.
Van Strydonck Bénazeth D. 2014. Four Coptic textiles from the Louvre collection 14C redated after 55 years. Radiocarbon 56(1):15.
Van Strydonck M, Grömer K. 2013. Analysis reports – 14C-dating of textiles from the Hallstatt salt mine. In: Grömer K, Kern A, Reschreiter H, Rösel-Mautendorfer H, editors. Textiles from Hallstatt. Weaving Culture in Bronze and Iron Age Salt Mines. Textilien aus Hallstatt. Gewebte Kultur aus dem bronze- und eisenzeitlichen Salzbergwerk. Budapest: Archaeolingua 29. p 189192.
Van Strydonck M, Van der Borg K. 1990–1991. The construction of a preparation line for AMS-targets at the Royal Institute for Cultural Heritage, Brussels. Bulletin Koninklijk Instituut voor Kunstpatrimonium 23:228234.
Van Strydonck M, De Moor A, Bénazeth D. 2004. 14C dating compared to art historical dating of Roman and Coptic textiles from Egypt. Radiocarbon 46(1):231244.
Van Strydonck M, Boudin M, Ervynck A. 2005. Humans and myotragus: the issue of sample integrity in radiocarbon dating. In: Alcover JA, Bover P, editors. Proceedings of the International Symposium “Insular Vertebrate Evolution: The Palaeontological Approach.” Palma. Onografies de la Societat d’Història Natural de les Balears 12:369–76.
Vedeler M, Bender Jørgensen L. 2013. Out of the Norwegian glaciers: Lendbreen—a tunic from the early first millennium AD. Antiquity 87(337):788801.
Wouters J. 1985. High performance liquid chromatography of anthaquinones analysis of plant and insect extracts and dyed textiles. Studies in Conservation 30:119128.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Radiocarbon
  • ISSN: 0033-8222
  • EISSN: 1945-5755
  • URL: /core/journals/radiocarbon
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 5
Total number of PDF views: 41 *
Loading metrics...

Abstract views

Total abstract views: 149 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th November 2017. This data will be updated every 24 hours.